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The following are highlights of the contribution of this manuscript. 

 Edge server placement is formulated as a multi-objective constraint optimization problem 

in this paper.  

 

 The proposed techniques can balance the workloads of edge servers and minimize the 

access delay between the mobile user and edge server. 

 

 Experimental results based on Shanghai Telecom’s base station dataset show that our 

approach outperforms several representative approaches in terms of access delay and 

workload balancing. 
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Abstract—With the rapid increase in the development of the 

Internet of Things and 5G networks in the smart city context, a large 

amount of data (i.e., big data) is expected to be generated, resulting 

in increased latency for the traditional cloud computing paradigm. 

To reduce the latency, mobile edge computing has been considered 

for offloading a part of the workload from mobile devices to nearby 

edge servers that have sufficient computation resources. Although 

there has been significant research in the field of mobile edge 

computing, little attention has been given to understanding the 

placement of edge servers in smart cities to optimize the mobile 

edge computing network performance. In this paper, we study the 

edge server placement problem in mobile edge computing 

environments for smart cities. First, we formulate the problem as a 

multi-objective constraint optimization problem that places edge 

servers in some strategic locations with the objective to make 

balance the workloads of edge servers and minimize the access 

delay between the mobile user and edge server. Then, we adopt 

mixed integer programing to find the optimal solution. 

Experimental results based on Shanghai Telecom’s base station 

dataset show that our approach outperforms several representative 

approaches in terms of access delay and workload balancing. 

Keywords—Mobile Edge Computing; Smart City; Edge Server 

Placement; Workload Balancing; Access Delay  

1. INTRODUCTION 

In recent years, mobile smart devices have become 

increasingly important as a tool for entertainment, learning, 
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news, businesses, and social networking for smarter living 

[1],[2]. The next-generation mobile networks aim to 

accelerate the development of smart cities, by not only 

increasing the data delivery rates but also increasing the 

amount of infrastructures used by smart city services and 

applications [2]. Although mobile applications are emerging 

and becoming computation-intensive, the computing 

capacity of mobile devices remains limited owing to the 

resource constraints of mobile devices (e.g., processing 

power, battery lifetime, and storage capacity), such that 

mobile users do not receive the same satisfaction compared 

to desktop device users [3]. An effective approach to 

enhancing the performance of mobile applications is to 

offload some of their tasks to remote resource-rich clouds 

[4],[5],[6],[7].  

However, the cloud is often remotely located and far 

from mobile users, and the data transfer delays between users 

and the cloud can be long and unpredictable. This is 

especially undesirable for mobile applications in which an 

immediate response time is critical to users, such as reality-

augmenting applications and mobile multiplayer gaming 

systems. To overcome the above-mentioned problem, 

cloudlet-based offloading has been proposed, where mobile 

devices offload computational process to a computing 

infrastructure (i.e., cloudlet) that is in relatively close 

proximity to the users using Wi-Fi access points (APs) [8]. 

Compared to cloud computing, cloudlets are less effective 

for the following reasons: cloudlets can be accessed only by 
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a Wi-Fi AP, which covers only small regions, and cloudlets 

are less resourceful compared to the cloud, so they are not 

scalable in terms of service and resource provisioning.  

To overcome the above challenges, mobile edge 

computing is proposed [9],[10]. Mobile edge computing 

enables mobile users to access IT and cloud computing 

services in close proximity within the range of radio access 

networks [11],[12]. This approach enables the computation 

and storage capacity from the core network to be transferred 

to the edge network in order to reduce latency. Edge servers 

can be deployed in close proximity to enable devices to 

offload some of their mobile application workload to realize 

significant improvements in the quality of mobile user 

experiences. 

Most existing studies have focused on offloading the 

workloads of mobile users to cloudlets to enable mobile 

devices to realize energy savings, and this approach assumes 

that the cloudlets have already been placed 

[13],[14],[15],[16]. Little attention has been paid to the effect 

of offloading the workloads of mobile users to edge servers 

and the placement of edge servers on the performance of 

mobile applications. In this paper, we focus on the edge 

server placement in a mobile edge computing environment 

that provides wireless internet coverage for mobile users in a 

large-scale metropolitan area. First, a large number of mobile 

users access edge servers in mobile edge computing 

environments because the metropolitan area that it covers has 

a high population density [17]. Secondly, because of the size 

of the network, service providers can take advantage of 

economies of scale when offering edge server services by 

making edge server services more affordable to the general 

public.  

However, the placement of edge servers in mobile edge 

computing environments is challenging. The locations of 

edge servers are critical to the access delays of mobile users 

and the resource utilization of edge servers, especially in 

smart cities that include several hundreds or thousands of 

base stations through which mobile users access the edge 

servers. Owing to the large size of these networks, inefficient 

edge server placement will result in long access delays and 

heavily unbalanced workloads among edge servers, i.e., 

some of the edge servers will be overloaded while others are 

underutilized, or even idle. Therefore, the strategic 

placement of edge servers will significantly improve the 

performance of various mobile applications such as edge 

server access delay. 

We assume that each edge server has the same limited 

computing resource to process mobile user requests, i.e., in 

this study, each edge server is identical, and edge servers are 

placed at some base station locations for mobile user access. 

The objective is to balance the workload among edge servers 

and minimize the edge server access delay. The challenge 

associated with such placements are determining 1) the 

locations in which edge servers should be placed, and 2) 

which base stations should be assigned to which edge servers, 

which we show to be an NP-hard problem. The main 

contributions of this paper are as follows: 

1) We formulate the edge server placement problem as a 

multi-objective constraint optimization problem. 

2) We adopt mixed integer programming (MIP) to find 

the optimal edge server placement with workload balancing 

among edge servers and minimizing the edge server access 

delay. 

3) Experimental results that are based on datasets from 

about 3000 of the base stations operated by Shanghai 

Telecom show that our approach outperforms other 

approaches. 

The rest of the paper is organized as follows: In Section 

2, we review related work. In Section 3, we introduce the 

system model and problem definitions, and we propose our 

edge server placement approach. In Section 4, we illustrate 

the comparative experimental evaluation results, while in 

Section 5, we conclude the paper, including an outlook on 

our future work. 

2. RELATED WORK 

Few studies have focused on edge server placement in 

mobile edge computing environments. To the best of our 

knowledge, this is the first study to consider the placement 

of edge servers in a mobile edge computing environment. 

However, in recent years, there have been many works on 

cloudlet placement [18],[19],[20]. Cloudlets are typically 



described as computers that are deployed at Wi-Fi APs in a 

network and act to offload the destinations of mobile users 

[21],[8],[22]. In the mobile edge computing environment, 

mobile users can access edge servers that are in close 

proximity within the range of base stations [11]. Edge servers 

can now also be considered as offloading destinations of 

mobile users, with the aim of reducing the access latency 

between mobile users and remote clouds. This is realized by 

importing the computation and storage capacity from the 

core network to the edge server [12]. 

It is believed that there are many similarities between the 

placement of cloudlets and edge servers [18], [19],[20]. Mike 

Jia et al. [18] proposed an offloading system model for multi-

user mobile task offloading, and they studied cloudlet 

placement and mobile user allocation to the cloudlet. Then, 

they devised an algorithm to solve the problem with the aim 

of enabling the placement of cloudlets at regions with high 

user density, and assigned mobile users to the placed 

cloudlets while balancing their workloads. Zichuan Xu et al. 

[19] also studied the cloudlet placement problem using many 

wireless APs. First, they formulated the problem as a novel 

capacitated cloudlet placement problem that placed K 

cloudlets in different strategic locations with the objective of 

minimizing the access delay between mobile users and the 

cloudlets serving the users. Secondly, they proposed an exact 

solution to the problem by formulating it as an integer linear 

programming, and they then devised an efficient solution. 

There are also a few studies [23],[24] on the computation 

offloading for mobile edge cloud computations. For example, 

Xu Chen et al. [24] studied the multi-user computation 

offloading problem for mobile edge cloud computing in a 

multi-channel wireless interference environment. They 

formulated the distributed computation offloading decision-

making problem among mobile device users as a multi-user 

computation offloading game, and they designed a 

distributed computation offloading algorithm that achieves a 

Nash equilibrium. 

Although these above-mentioned studies on the cloudlet 

placement problem are effective, Mike Jia et al. [18] focused 

only on balancing the workloads of cloudlets, and other 

studies [19],[20],[23],[24],[25],[26],[27]only considered the 

access delay. Inspired by this, in our approach, we propose 

to place edge servers for base stations in smart cities, and we 

then consider both the access delay and workload balancing 

as optimization objectives in mobile edge computing 

environments. 

3. OUR APPROACH 

In Section 3.1, we first introduce the system model and 

define some notations that are used throughout the rest of the 

paper. Then, we present the problem definition in Section 3.2. 

In Section 3.3, we formalize the edge server placement 

problem as a multi-objective optimization problem, and we 

describe the edge server placement model. Finally, in Section 

3.4, we adopt MIP to find the optimal solution in terms of 

workload balancing and access delay. Related notations are 

explained in detail in Table 1. 

Table 1. Notations 

Symbol Meaning 

G Mobile edge computing network  

K Number of edge servers 

B Set of all base stations in the network 

S 
Set of all edge servers that will be placed in the 

network 

E 
Set of links between a base station and an edge 

server at a location in S. 

bt  Workload of base station b and b B   

sT  Workload of edge server s and s S  

bl  Location of base station b and b B   

sl  Location of edge server s and s S   

sE  
Set of base stations that are in control of edge 

server s S  

d 
Access delay between base station and edge 

server 

3.1 System Model 
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Fig. 1. An example of mobile edge computing with edge server placement. 

In mobile edge computing environments, the edge server 

placement problem can be considered as a network, which is 

an undirected graph ( , )G V E  consisting of many mobile 

users, many base stations, and a set of potential locations for 

edge servers. V B S  , where B is the set of base stations 

and S is the set of potential locations of edge servers. E 

represents the set of links between a base station and an edge 

server at a location in S. Note that the links between two base 

stations and the links between a mobile user and a base 

station are neglected in Fig. 1, because these links are not our 

focus. Mobile users receive services by sending requests to a 

base station in the mobile edge computing network, where 

each base station has a fixed radio coverage. Therefore, each 

base station processes mobile user requests, i.e., the number 

of mobile user requests to a specific edge server is its 

workload. We use bt  and bl  to represent the workload and 

location, respectively, for base station  b b B . Similarly, 

sl  denotes the potential location for edge server  s s S .  

Assume that there are K edge servers that will be assigned 

to K different locations, where K is a constant. We assume 

that each edge server has the same limited computing 

resource to process mobile user requests, and each base 

station accessed the edge server directly, i.e., each base 

station is co-located with an edge server. Given the 

 1,2,3,...K K   edge servers, base stations can offload 

their tasks to the edge servers. We assume that each edge 

server is responsible for a subset of base stations in B to 

process the mobile user requests, and the same base station 

is not shared between any two edge servers, while the union 

sets of base stations in charge of edge servers is B. The 

workload to be processed by each edge server is distributed 

as evenly as possible, so we can balance workloads among 

limited edge servers and extend the service life of edge 

servers. Because each base station has its own edge server, 

the edge server access delay is proportional to the distance 

between the base station and edge server. We need to 

consider the account access delay in order to optimize the 

edge server placement in mobile edge computing networks. 

From Fig. 1, we use edge server 2s  as an example to 

introduce the K edge server placement problem directly. We 

assume that four base stations access 2s  to obtain services, 

and the workload of base station 1b  is 2, 2b  is 3, 3b  is 6, 

and 4b  is 7. Therefore, we need to determine how to place 

2s  among base stations to minimize the access delay. In 

addition to solving the above problem, it is also important to 

determine the dominant area of each edge server to realize a 

balanced workload. 

3.2 Problem Definitions 

 The edge server placement problem in mobile edge 

computing networks ( , )G V E  is defined as follows. 

Given the network G, a set 1 2, ,..., Ks s s  of K edge servers 

is to be placed in K potential locations, and the edge server 

processes all of the workloads of the base stations, i.e., the 

number of mobile user requests at each base station jb B , 

which are in control of it. 

In the mobile edge computing network, for a given set 

 1 2, ,..., Ks s s  of K edge servers to be placed in K locations, 

i.e., 
1 2

( , ,..., )
Ks s sl l l l , find an optimization placement 

solution for the edge server such that the workloads of the 

edge server can be balanced, and the access delay should be 

minimized subject to the following two constraints: 



 No two edge servers share the same base station, 

and the combined set of base stations in charge of 

the edge servers is B. 

 Each base station that is co-located with an edge 

server and an edge server will process all mobile user 

requests from the base station. 

3.3 Edge Server Placement Model 

In this paper, the objective of edge server placement is to 

balance the workload among edge servers and minimize the 

access delay between base stations and edge servers. Thus, 

edge server placement in a mobile edge computing network 

can be formulated as a multi-objective constraint 

optimization problem, i.e., a minimization problem for the 

workload difference of any two edge servers, and a 

minimization problem for access delay given by 

 
,

( ) ( ),i j
i j S

T l Min Max T T


    (1) 

 ( ) ( , ),
s

b s
s S b E

D l Min Max d l l
 

   (2) 

where l L  is an edge server placement scheme that 

contains K edge server locations, and L represents all 

possible edge server placement schemes. ( )T l  represents 

the workload balancing among edge servers and ( )D l  is 

the access delay of edge servers. We consider the following 

two constraints: 

 Assuming that all edge servers are placed, there must 

be no common base station for each edge server, and all 

base stations must be in control of edge servers, i.e., 

 i jE E   ,  (3) 

 s
s S

E B

  .  (4) 

 Each base station will be co-located with an edge server, 

and the edge server will process all mobile user requests 

from the base station, i.e., 

 
s

s b
b E

T t


  .  (5) 

We assume that the access delay between a base station 

at location bl  and an edge server at location sl  is defined 

as  ,b sd l l , i.e., the distance between them.  

In essence, the problem is to identify K locations from 

multiple potential locations, and place the K edge servers. 

Further, we need to determine at which location each edge 

server is  should be placed such that the workloads among 

edge servers can be balanced and a minimum access delay is 

realized. The MIP has been used to solve server or cloudlet 

placement problems [28-30]. Inspired by MIP, we propose 

an approach to solve the optimization problem for edge 

server placement, which is presented in more detail later.  

Lemma 1. The edge server placement problem in a 

mobile edge computing network ( , )G V E  is NP-hard. 

Proof. We reduce the metric K-median problem to the 

edge server placement problem as follows. Consider the 

metric K-median problem in a given metric complete graph 

' ' '( , )G V E . We construct a mobile edge computing 

network ( , )G V E  from 'G , where 'V V  and 

'E E . Now, we consider placing K edge servers into G. 

We see that an optimal solution to the edge server placement 

problem in G is an optimal solution to the metric K-median 

problem in 'G . Because the metric K-median problem is 

NP-hard [31], the edge server placement problem is also NP-

hard.  

In this section, we adopt the weighting method to 

transform the edge server placement problem into a signal-

objective optimization problem with an (Pareto) optimal 

solution. 

As shown in (1–5), our edge server placement problem 

can be described as follows: 

 

1 2
( , ,..., )

min ( ),min ( )
K

s

T
s s s

i j ss S

s b
b E

find l l l l

which T l D l

subject to E E E B

T t




 


     

 



， ,  (6) 

where l is an m-dimensional vector of decision variables,

( )T l , ( )D l  represents functions that are defined for two 

constraints L. Then, we can transfer (1–5) into (6) as the same 

multi-objective optimization problem, i.e., Problem 1. 



Definition 1. l̂ L  is said to be a Pareto optimal 

solution of Problem 1 if and only if there exists no other 

l L such that ˆ( ) ( )T l T l , ˆ( ) ( )D l D l . 

Definition 2. *l L is said to be a weakly Pareto optimal 

solution of Problem 1 if and only if there exists no other l L

such that *( ) ( )T l T l , *( ) ( )D l D l . 

In order to obtain the Pareto optimal solution or weakly 

Pareto optimal solution of Problem 1, we modify the multi-

objective optimization problem into a single-objective 

optimization 1 1+ =1w w  problem using the weighting 

method. 

In this way, we assume that the weighting coefficients 

1w  and 2w  are real numbers such that 1 2, 0w w   

1 2, 0w w  . Usually, we also assume that the weights are 

normalized. Problem 1 is transformed into the following 

single-objective optimization problem, i.e., Problem 2: 

 

1 2

1 2

( , ,..., )

min( ( ) ( ))
K

s

s s s

i j ss S

s b
b E

find l l l l

which w T l w D l

subject to E E E B

T t







  
     

 



， ,  (7) 

where 1 2, 0w w   and 1 1+ =1w w  . 

Theorem 1. The solution of Problem 2 is a weakly Pareto 

optimal solution of Problem 1. 

Proof: Let l̂ L  be a solution of Problem 2. Let us 

assume that it is not a weakly Pareto optimal solution of 

Problem 1. In this case, there exists a solution l L such that 

ˆ( ) ( )T l T l , ˆ( ) ( )D l D l . According to the assumptions, 

we set the weighting coefficients, 1 2, 0w w  for at least one 

that is larger than zero. Thus, we have 1 2( ) ( )w T l w D l  

1 2
ˆ ˆ( ) ( )w T l w D l    . This is a contradiction of the 

assumption that l̂  is a solution of Problem 2. That is, l̂  is 

a weakly Pareto optimal solution of Problem 1.  

Theorem 2. The solution of Problem 2 is Pareto optimal 

if the weighting coefficients are positive, i.e., 1 2, 0w w  . 

Proof: Let *l L  be a solution of Problem 2 with 

positive weighting coefficients. Let us assume that is not 

Pareto optimal. This means that there exists a solution l L  

such that *( ) ( )T l T l , *( ) ( )D l D l  and ˆ( ) ( )T l T l , 

ˆ( ) ( )D l D l  for at least one. Because 1 2, 0w w  , we have 

1 2( ) ( )w T l w D l   * *
1 2( ) ( )w T l w D l    . This contradicts 

the assumption that *l  is a solution of Problem 2. That is, 
*l must be Pareto optimal. 

3.4 Finding an Optimal Solution 

 
Fig. 2. Assignment of base stations to edge servers. 

In this section, we present details of the process 

employed to utilize MIP to place edge servers. Fig. 2 shows 

the assignment of base stations to edge servers. We used a 

binary decision variable , {0,1}i jx   to indicate whether a 

base station ib  will be assigned to an edge server js , 

where , =1i jx  if base station ib  is assigned to js ; 

otherwise, , =0i jx  for all i and j with 1 i B  , B  is the 

total number of base stations and 1 j K  .  

With this approach, we assume that each edge server is 

placed along with one of the base stations. Because the 

number of base stations is B  , the number of available 

locations at which edge servers can be placed is B . For 

each assignment, we give a mark ,i jc  to measure whether it 

is suitable for an edge server. This mark considers both the 

distance and workload.  

For the distance, we prefer a smaller distance from all 

base stations to their assigned edge servers.  



For the workload, we prefer that the workload of each 

edge server be more balanced, and we evaluated this 

objective using the standard deviation. Below, we introduce 

the procedure for applying MIP to this problem. 

Then, we should obtain a variable for each assignment, 

i.e., ,i jx . For each ,i jx , there exist two indices, i.e., the 

distance between base station ib  and edge server js

(denoted by symbol ,i jd ) and the workload of base station 

ib  (denoted by symbol it ). To simplify the subsequent 

processing, we should normalize these two indices. The 

normalizing methods are as follows:  

 For the distance, it is conventional to consider that 

the edge server should be placed in the denser area. 

Therefore, for each base station ib , we find N 

(
B

N
K

  ) base stations nearest to ib  as a set 

1 2
{ , ,..., }

i near near nearNnearb i i iB b b b , and we select the 

farthest one from nearbB , the farthest distance value 

as id . For each id , we compute 

-i
i

d Mind
d

Maxd Mind



 where Mind and Maxd 

respectively represent the minimal and maximal id  

for all base stations. The value of ,i jd  is within the 

range[0,1] ; 

 For the workload, we used the sum of the squared 

difference to balance the probability of each 

placement for the edge server. First, we find the 

average workload of each edge server based on all 

base stations 1=

B

i
i

t
W

K



. Then, we calculate the sum 

of the squared difference as 
2

1

N

i i
i

w t W


 
  
 
 . 

Finally, we normalize each iw  using 

i
i

w Minw
w

Maxw Minw





wher Minw and Maxw 

respectively represent the minimal and maximal 

iw . We can see that the value of iw  is within the 

range [0,1] . 

Then, we used the weighted sum of the normalized 

distance and workload to transform the two indices into a 

single index. We denote that single index as ,i jc , which is 

obtained by ,, (1 )i ji j ic wd    . Here, the variable   

represents the weight, and we define 0.5u  , and it is in the 

range (0,1) . 

The MIP model is as follows: 

 , ,
1

B K

i j i j
i j

Min c x

   (8) 

subject to the following constraints: 

 ,
1

1
K

i j
j

x


 ,  (9) 

 , {0,1}i jx  ,  (10) 

where ,
1

1
K

i j
j

x


  ensures that each base station should be 

assigned to one and only one edge server. 

4 PERFORMANCE EVALUATION 

In this section, we implement our proposed approach to 

verify the performance, and we evaluate our proposed 

approach compared with several representative placement 

approaches in terms of workload balancing, access delay 

under various edge server workloads, and the placement of 

different numbers of edge servers. Results of extensive 

experimental evaluations show that our proposed approach is 

both effective and efficient.  

4.1 Experiment Setup 

To validate our proposed approach, we adopted a real 

base station dataset, and we implemented the experiments 



using Python 3.5 and IBM cplex tool2 with source code3. 

Our experiments primarily consisted of three parts: 1) we 

compared our approach with other known placement 

approaches; 2) we determined the number of edge servers K 

that are placed using our approach; and 3) we investigated 

the parameters of our approach. 

4.2 Dataset Description 

In our experiments, we utilized the dataset for Shanghai 

Telecom’s base stations, which contains internet information 

for mobile users who access 3233 base stations. According 

to our analysis, there are 3000 effective base stations because 

some of them are idle, while for others, the data are invalid. 

The data contain the detailed start time and end time of base 

station access for each mobile user. Shanghai is a typical 

densely populated city, so it can meet the requirement of 

mobile edge computing network perfectly. Fig. 3 shows 

clearly the distribution of base stations included in Shanghai 

Telecom’s base station dataset. 

 

Fig. 3. Distribution of base stations included in Shanghai Telecom’s base station dataset. 

Fig. 3 shows the distribution of 3233 base stations. The number represents the number of base stations within the range of the red circles. Fig. 3 illustrates that 

in Shanghai, the base station distribution is very dense. 

Table 2. Workload of some base stations included in Shanghai Telecom’s base station dataset. 

Base Station ID 40 76 328 531 664 1039 1265 1927 2160 2513 2748 

User Number 1824 6 108 81 151 254 499 821 3 162 74 

Workload (min) 2571744 2830 140960 109145 190703 321462 624866 1042672 4226 205734 98623

For each base station b in B, let bt  represent the number 

of mobile user requests that use base stations to access edge 

servers in the mobile edge computing network, which is a 

positive integer, i.e., the workload of base station b. While 

base stations are often deployed at locations such as schools, 

shopping malls, and train stations, the number of mobile user 

requests at base station b can be estimated by the population 

density in that area, or the historical base station access 

information using a linear regression technique. From 

Shanghai Telecom’s base station dataset, we let the number 

of mobile user requests that access each base station 

                                                   
2 https://www.ibm.com/us-en/marketplace/ibm-ilog-cplex 

represent that base station’s workload. In Table 2, we 

describe a subset of the base station information obtained 

from Shanghai Telecom’s base station dataset.  

From the dataset, we randomly selected some base 

stations, and Table 2 illustrates the workload of these base 

stations as an example. According to the start time and end 

time of requests by mobile users that access base stations, we 

can calculate the total request time as the base station 

workload. 

From Table 2, we find that there is a large unbalanced 

load between base stations, i.e., some of the base stations are 

3 https://github.com/cbozi/edge-server-placement 



overloaded, while others are underutilized, and even idle. 

Therefore, the strategic placement of edge servers to offload 

the workload of some overloaded base stations should be 

urgency performed to optimize the performance of mobile 

applications. 

4.3 Comparison of Approaches and Evaluation Metric 

We compared the performance of our proposed approach 

with other placement approaches in terms of both the 

workload balance and access delay as follows: 

1) K-means. This approach is commonly used to 

automatically cluster a data set into K groups [32]. 

With this approach, K initial cluster centers are 

selected and then iteratively refined. We use K-

means clustering algorithms to find K clusters of 

base stations, then place K edge servers into their 

centers to minimize the within-cluster sum of 

squares [33]. 

2) Top-K. This approach places the K edge servers at 

the Top-K base stations, where a base station is a 

Top-K base station if the number of mobile user 

requests that it receives is among the Top-K values. 

The rationale behind this approach is to place edge 

servers at the K busiest base stations that have more 

mobile user requests than others. 

3) Random. This approach places the K edge servers at 

base stations in a random manner. 

Our approach is different from the compared approaches 

that formulates the edge server placement model and then 

adopts the mixed integer programming to find the optimal 

solution.   

Definition 3 (Workload Balancing). We used the 

standard deviation to evaluate the workload balancing of 

edge servers. We assume that the K edge servers are placed 

among the base stations, and we then calculate the workload 

of each edge server i as iT , and the standard deviation of the 

workload can be computed as follows: 
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K

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


,  (11) 

where T  represents the average value of workloads for all 

edge servers. The smaller the value of the standard deviation, 

the more balanced is the workload of each edge server. 

Definition 4 (Access Delay). We used the access delay 

between base stations and edge server to evaluate the 

performance for all approaches. In our experiments, we let 

the average distance between the base station and edge server 

represent the access delay. 

4.4 Comparison of Results using Number of Base 

Stations 

We evaluated the performance of different approaches 

using Shanghai Telecom’s base station dataset. To do this, 

we increased the number of base stations n from 300 to 3000, 

while setting the ratio of the number of edge servers K to the 

number of base stations to 0.1, i.e., 0.1R K n  . Fig. 4 

shows the performance evaluation curves for different 

approaches as the number of base stations increases. 

From Fig. 4, we can see that our proposed approach 

generally outperforms the K-means, Top-K, and Random 

approaches. Fig. 4(a) and Fig. 4(b) show plots of the edge 

server access delay and workload balancing, respectively. 

With respect to the access delay, the performance ranking is 

K-means > MIP > Random > Top-K; in terms of workload 

balancing, which is a parameter whose value is used to 

evaluate the workload balancing, the performance ranking is 

Top-K > MIP > K-means > Random. Overall, our approach 

is more effective than other approaches in terms of both 

access delay and workload balancing. 

Note that the Random approach outperforms the Top-K 

approach in terms of the access delay. This is an interesting 

result in our experiment based on the Shanghai Telecom’s 

base station dataset. Because Shanghai is a large and densely 

populated city, and the distribution of base station is dense, 

as shown in Fig. 3, if we use the Top-K approach to place the 

edge servers, it may result in a poorer performance than the 

Random approach.  

 



 

(a) Edge server access delay.  

 

(b) Edge server workload balancing. 

Fig. 4. Performance evaluation of different approaches as the number of base 

stations increases. 

4.5 Comparison of Results with Number of Edge Servers 

We used different approaches to study the impact of the 

number of edge servers K on the performance of the edge 

server in terms of the access delay and workload balancing. 

We performed experiments using data obtained for 3000 

base stations by varying K from 100 to 500. 

Fig. 5(a) and 5(b) illustrate the curves of the edge server 

access delay and workload balancing as the number of edge 

server K increases. From Fig. 5(a), we can see that the edge 

server access delay obtained by each mentioned algorithm 

decreases as K increases because the workload of each base 

station will have more chances to be assigned to its nearest 

edge server. We can also see that the MIP approach 

outperforms the other approaches as K increases. From Fig. 

5, we can find an appropriate K subject to some constraints. 
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(b) Edge server workload balancing 
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Fig. 5. Impact of the number of edge servers K on the performance of 

difference approaches. 

4.6 Study of Parameter R 

In our approach, we studied the parameter R by 

increasing it from 0.04 to 0.14. We let the parameter R to 

represent the ratio of the number of edge servers to the 

number of base stations. If 0.1R  and n = 3000, then K = 

300, i.e., an edge server processes all requests for 10 base 

stations.  

Fig. 6 plots the curves of the performance of our MIP 

algorithm as the parameter R increased. We see that the edge 

server access delay decreases with increasing R because the 

workload of each base station will have more chances to be 

assigned to its nearest edge server. Similarly, the workload 

between edge servers is more balanced because the 

workloads of base stations will be assigned to more edge 

servers and the difference becomes smaller. 

For smart cities, e.g., Shanghai, we need to determine 

how to select the optimal edge server placement scheme. To 

do this, we need to consider the following factors:  

1) Availability of funds for infrastructural development. 

This determines the number of edge servers that can 

be placed. As the number of edge servers increases, 

so will the performance. As expected, a higher 

number of edge servers also corresponds to a higher 

cost. 

2) Determining the best access delay that is within the 

acceptable range. We used the distance between each 

base station and edge server as well as the data rates 

to find the access delay.  

Considering the above factors and according to the 

performance of our proposed approach, the manager of smart 

cities can determine the value of the parameter R by 

considering the access delay and workload balance. 

 

(a) Edge server access delay 

 

 (b) Edge server workload balancing 

Fig. 6. Variation in the MIP performance as the parameter R increases. 

5 CONCLUSION 

Edge computing is an important emerging technology 

that can be used to extend the computation and storage 

capabilities by offloading processing workload from the 

cloud in order to reduce mobile edge computing network 

latency on mobile devices. In this study, we first investigate 

the edge server placement problem in a large-scale mobile 
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edge computing environment, with the objective of 

balancing the workload between edge servers and 

minimizing the edge server access delay. Then, we formulate 

the problem as a multi-objective constraint optimization 

problem and propose an MIP edge server placement 

algorithm to find the optimal solution. Finally, we performed 

experiments to evaluate the performance of the proposed 

approach in a real mobile edge computing network dataset 

obtained from Shanghai Telecom, and we compare the 

results with those obtained using other approaches. The 

experimental results show that our proposed approach 

outperforms several representative approaches in terms of the 

access delay and workload balancing in mobile edge 

computing. 

This paper assumes the edge servers are homogeneous, 

but they are heterogeneous in real system deployment. 

Moreover, the computation power of the edge servers are 

different. Hence, our future work will focus on the 

heterogeneous and green edge server placement problem.  

 

Acknowledgments 
This work was supported in part by the National Science

 Foundation of China (Grant No. 61472047). 

REFERENCES 

[1] E. Ahmed, A. Gani, M. Sookhak, S.H. Ab Hamid, F. Xia, 

Application optimization in mobile cloud computing: Motivation, 

taxonomies, and open challenges, Journal of Network and 

Computer Applications, 52 (2015) 52-68. 

[2] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, H. Flinck, Mobile edge 

computing potential in making cities smarter, IEEE 

Communications Magazine, 55 (2017) 38-43. 

[3] H.T. Dinh, C. Lee, D. Niyato, P. Wang, A survey of mobile 

cloud computing: architecture, applications, and approaches, 

Wireless communications and mobile computing, 13 (2013) 1587-

1611. 

[4] E. Ahmed, A. Akhunzada, M. Whaiduzzaman, A. Gani, S.H. Ab 

Hamid, R. Buyya, Network-centric performance analysis of 

runtime application migration in mobile cloud computing, 

Simulation Modelling Practice and Theory, 50 (2015) 42-56. 

[5] J. Liu, E. Ahmed, M. Shiraz, A. Gani, R. Buyya, A. Qureshi, 

Application partitioning algorithms in mobile cloud computing: 

Taxonomy, review and future directions, Journal of Network and 

Computer Applications, 48 (2015) 99-117. 

[6] A.E.C. Cloud, Amazon web services, Retrieved November, 9 

(2011) 2011. 

[7] M. Cusumano, Cloud computing and SaaS as new computing 

platforms, Communications of the ACM, 53 (2010) 27-29. 

[8] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The Case 

for VM-Based Cloudlets in Mobile Computing, IEEE Pervasive 

Computing, 8 (2009) 14-23. 

[9] P. Mach, Z. Becvar, Mobile Edge Computing: A Survey on 

Architecture and Computation Offloading, IEEE Communications 

Surveys & Tutorials, (2017). 

[10] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: 

Vision and challenges, IEEE Internet of Things Journal, 3 (2016) 

637-646. 

[11] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal, 

Mobile-edge computing introductory technical white paper, White 

Paper, Mobile-edge Computing industry initiative, (2014). 

[12] A. Ahmed, E. Ahmed, A survey on mobile edge computing, in:  

2016 Proceedings of the International Conference on Intelligent 

Systems and Control, pp. 1-8. 

[13] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, Clonecloud: 

elastic execution between mobile device and cloud, in: 2011 

Proceedings of the 6th conference on Computer systems, ACM, pp. 

301-314. 

[14] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. 

Saroiu, R. Chandra, P. Bahl, MAUI: making smartphones last 

longer with code offload, in: 2010 Proceedings of the 8th 

international conference on Mobile systems, applications, and 

services, ACM, pp. 49-62. 

[15] R. Kemp, N. Palmer, T. Kielmann, H. Bal, Cuckoo: a 

computation offloading framework for smartphones, in: 2010 

Proceedings of the International Conference on Mobile Computing, 

Applications, and Services, Springer, pp. 59-79. 

[16] S. Kosta, A. Aucinas, P. Hui, R. Mortier, X. Zhang, Thinkair: 

Dynamic resource allocation and parallel execution in the cloud for 

mobile code offloading, in: 2012 Proceedings of the IEEE Infocom, 

pp. 945-953. 



[17] W. Stallings, Local and metropolitan area networks, 

Macmillan Publishing Co., Inc., 1993. 

[18] M. Jia, J. Cao, W. Liang, Optimal Cloudlet Placement and User 

to Cloudlet Allocation in Wireless Metropolitan Area Networks, 

IEEE Transactions on Cloud Computing, PP (2015). 

[19] Z. Xu, W. Liang, W. Xu, M. Jia, S. Guo, Efficient Algorithms 

for Capacitated Cloudlet Placements, IEEE Transactions on Parallel 

and Distributed Systems, 27 (2016) 2866-2880. 

[20] H. Xiang, X. Xu, H. Zheng, S. Li, T. Wu, W. Dou, S. Yu, An 

Adaptive Cloudlet Placement Method for Mobile Applications over 

GPS Big Data, in: 2016 Proceedings of the IEEE Global 

Communications Conference, pp. 1-6. 

[21] A. Wolbach, J. Harkes, S. Chellappa, M. Satyanarayanan, 

Transient customization of mobile computing infrastructure, in: 

2008 Proceedings of the First Workshop on Virtualization in 

Mobile Computing, ACM, pp. 37-41. 

[22] S. Clinch, J. Harkes, A. Friday, N. Davies, M. Satyanarayanan, 

How close is close enough? Understanding the role of cloudlets in 

supporting display appropriation by mobile users, in: 2012 

Proceedings of the Pervasive Computing and Communications, pp. 

122-127. 

[23] G. Lewis, S. Echeverría, S. Simanta, B. Bradshaw, J. Root, 

Tactical cloudlets: Moving cloud computing to the edge, in: 2014 

Proceedings of the Military Communications Conference, pp. 1440-

1446. 

[24] X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user 

computation offloading for mobile-edge cloud computing, 

IEEE/ACM Transactions on Networking, 24 (2016) 2795-2808. 

[25] M. Tao, K. Ota, M. Dong, Foud: Integrating Fog and Cloud for 

5G-Enabled V2G Networks. IEEE Network, 31(2017): 8-13. 

[26] H. Li, M. Dong, K. Ota, M. Guo, Pricing and Repurchasing for 

Big Data Processing in Multi-Clouds. IEEE Transactions on 

Emerging Topics in Computing, 4 (2016): 266-277. 

[27] H. Li, M. Dong, X. Liao, H. Jin, Deduplication-Based Energy 

Efficient Storage System in Cloud Environment. The Computer 

Journal, 58(2015): 1373-1383. 

[28] C.C.T. Mark, D. Niyato, T. Chen-Khong, Evolutionary optimal 

virtual machine placement and demand forecaster for cloud 

computing, in: 2011 Proceedings of the Advanced Information 

Networking and Applications, pp. 348-355. 

[29] A. Ceselli, M. Premoli, S. Secci, Cloudlet network design 

optimization, in: 2015 Proceedings of the Interbational Federation 

for Information Processing Networking Conference, pp. 1-9. 

[30] S.E. Dashti, A.M. Rahmani, Dynamic VMs placement for 

energy efficiency by PSO in cloud computing, Journal of 

Experimental & Theoretical Artificial Intelligence, 28 (2016) 97-

112. 

[31] M. Charikar, S. Guha, É. Tardos, D.B. Shmoys, A constant-

factor approximation algorithm for the k-median problem, in: 1999 

Proceedings of the 31th ACM symposium on Theory of computing, 

ACM, pp. 1-10. 

[32] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, Constrained k-

means clustering with background knowledge, in: 2001 

Proceedings of the International Conference on Machine Learning, 

pp. 577-584. 

[33] J. MacQueen, Some methods for classification and analysis of 

multivariate observations, in: 1967 Proceedings of the 5th Berkeley 

symposium on mathematical statistics and probability, pp. 281-297. 

 



 

 

Shangguang Wang is an associate professor at the State Key Laboratory of 

Networking and Switching Technology, Beijing University of Posts and 

Telecommunications (BUPT). He received his Ph.D. degree at BUPT in 2011. He is 

Vice Chair of IEEE Computer Society Technical Com- mittee on Services Computing, 

President of the Service Society Young Scientist Forum in China and served as 

General Chair of Collaborate- Com 2016, General Chair of ICCSA 2016, TPC Chair of 

IOV 2014, and TPC Chair of SC2 2014.   

 

Yali Zhao received bachelor's degree in computer science and technology from 

Shandong University, in 2013. Currently, she is a Master Degree Candidate at the State 

Key Laboratory of Networking and Switching Technology, Beijing University of Posts 

and Telecommunications. Her research interests include service computing and edge 

computing. 

 

 

Jinliang Xu received the bachelor's degree in electronic information science and 

technology from Beijing University of Posts and Telecommunications in 2014. 

Currently, he is a Ph.D. candidate in computer science at the State Key Laboratory of 

Networking and Switching Technology, Beijing University of Posts and 

Telecommunications. His research interests include Service Computing, Information 

Retrieval, and Crowdsourcing. 

 

 

Ching-Hsien Hsu is a professor and the chairman in the CSIE department at Chung 

Hua University, Taiwan; He was distinguished chair professor at Tianjin University of 

Technology, China, during 2012-2016.  His research includes high performance 

*Author Biography & Photograph



computing, cloud computing, parallel and distributed systems, big data analytics, 

ubiquitous/pervasive computing and intelligence. He has published 100 papers in top 

journals such as IEEE TPDS, IEEE TSC, IEEE TCC, IEEE TETC, IEEE System, 

IEEE Network, ACM TOMM and book chapters in these areas. Dr. Hsu is serving as 

editorial board for a number of prestigious journals, including IEEE TSC, IEEE TCC.  

He has been acting as an author/co-author or an editor/co-editor of 10 books from 

Elsevier, Springer, IGI Global, World Scientific and McGraw-Hill.  Dr. Hsu was 

awarded nine times distinguished award for excellence in research from Chung Hua 

University.  He is vice chair of IEEE TCCLD, executive committee of IEEE TCSC, 

Taiwan Association of Cloud Computing and an IEEE senior member. 

 

 


