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Popular navigation services are used by drivers both to plan out routes and to optimally navigate 
real time road congestion in internet of vehicles (IoV). However, the navigation system (such as GPS 
navigation system) and apps (such as Waze) may not be possible for each individual user to avoid traffic 
without creating congestion on the clearer roads, and it might even be that such a recommendation 
leads to longer aggregate routes. To solve this dispersion, in this paper, we first apply a concept of virtual 
vehicle in IoV, which is an image of driver and vehicle. Then, we study a setting of non-atomic routing 
in a network of m parallel links with symmetry of information. While a virtual vehicle knows the cost 
function associated with links, they are known to the individual virtual vehicles choosing the link. The 
virtual vehicles adapt the cooperation approach via strategic concession game, trying to minimize the 
individual and total travel time. How much benefit of travel time by the virtual vehicles cooperating 
when vehicles follow the cooperation decisions? We study the concession ratio: the ratio between the 
concession equilibrium obtained from an individual optimum and the social optimum. We find that 
cooperation approach can reduce the efficiency loss compared to the non-cooperative Nash equilibrium. 
In particular, in the case of two links with affine cost functions, the concession ratio is at most 3/2. For 
general non-decrease cost functions, the concession ratio is at most 2. For the strategic concession game, 
the concession ratio can approach to 1 which is a significant improvement over the unbounded price of 
anarchy.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

Optimal route choice not only can decrease the travel time for 
drivers, but also can solve or reduce the traffic congestions [1,2], 
particularly in metropolitan areas. To provide an optimal route, 
most navigation systems (such as Google Maps) and traffic apps 
(such as Waze) are used by drivers both to plan out routes and to 
optimally navigate real time road congestion [3].

Navigation systems and traffic apps calculate the best route tak-
ing into account real-time traffic flow data, as well as historic data 
to predict traffic flow [4]. For example, Google Maps calculates the 
current traffic condition using both real-time data from anonymous 
GPS-enabled device users and historic traffic data to provide opti-
mal routes [3]. Waze collects aggregate traffic information in areas 
of interest and so can take real time traffic conditions, which are 
incalculable to individual drivers, into account when computing 
optimal route recommendations [4].

✩ Fully documented templates are available in the elsarticle package on CTAN.
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Despite this, drivers may still not satisfy the recommendations 
of the route from navigation systems and traffic apps. And the rec-
ommendations always not consider the possible for each individual 
driver to avoid traffic without creating congestion on the clearer 
roads, and it might even be that such a recommendation leads to 
longer aggregate routes.

Consider a simplistic example according to [4]. Suppose that a 
thousand drivers want to route from city Source to city Destina-
tion, which is reachable from Source through two parallel roads. 
The travel time in each of these roads depends on whether or 
not an accident has occurred. Specifically, suppose that in each of 
these roads, in the absence of accidents, each driver’s trip takes 
n/1000 hours, where n is the number of driver on the road (e.g., 
if half of the drivers take a road with no accident, then the travel 
time of each driver is half an hour). However, if an accident oc-
curs, then the road becomes clogged, and each driver’s trip takes 
one 2n/1000 hours, independently of the number of drivers on 
the road. Suppose that an accident occurs on each road with some 
probability p, which is known to all drivers, but whether or not 
an accident has occurred on a given road is unknown. Now, we 
analyze the travel time expectation of each driver cloud spend in 
different cases [5]:
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Case 1: If there is no any real-time traffic information exist, then 
each driver would choose a road random. To a first order 
approximation, we assume that the exactly half of drivers 
would take each road. In this case, the travel time expec-
tation can be obtained easily, i.e. 3p(1 − p)/2.

Case 2: If there is exist navigation system or traffic app, sup-
pose that each driver can knows exactly which road has 
had an accident, and can route each driver to his indi-
vidually optimal. In this case, in every situation except 
one where no accident occurs on either road, each driver 
would spend two hours on the road. The travel time ex-
pectation of each driver is 2p(1 − p) which is larger than 
Case 1.

Case 3: Now suppose that each driver not only knows which road 
has had an accident, and also can negotiate with oth-
ers to choose road cooperatively. In this case, a part of 
drivers would choose the road which has had accident. 
Assuming n drivers chooses the accident road, then the 
travel time expectation of each driver can be obtained, 
i.e., (6n2 − 4000n + 2 × 106)p(1 − p)/106.

Taking a closer look at this example, we observe that Case 2, in 
which each driver chooses the road selfishly, maybe is the worst 
selection, even is worse than Case 1. This implies recommendations 
form the navigation systems and traffic apps may not decrease the 
travel time for driver, and even lead to a new traffic congestion. In 
Case 3, it is same as Case 2 when n = 0, or is same as Case 1 when 
n = 500. For the Case, we know that the travel time expectation of 
each driver is the least when n = 1000/3, that is say the socially 
optimal routing when drivers cooperate to choose the road. Hence, 
drivers cooperate with each other can optimal the travel time.

According to the above analysis, we know drivers choose road 
cooperatively can optimal socially welfare. However, drivers always 
cannot know others choices in reality, and they also cannot nego-
tiate with each other when they choose the route.

To study this question, in this paper, we first utilize a vehicle 
agent-based [6] in Edge and cloud to help drivers negotiate with 
others called virtual vehicle (VV) [7]. Suppose each driver has a 
corresponding VV, and it has the parts of driver’s knowledge which 
can replace the driver to make decision in cloud.

Then we consider a bargaining routing approach [8] to optimal 
the travel time to solve the cooperative problem. In this game, we 
set a source node, a target node, and m parallel links, known to all 
players. The players (who know the others’ strategy) decide which 
route to take, and incur the travel cost realized on their route. Be-
cause the VV may exist selfish behavior and we cannot inextricably 
compel VV to cooperate with others. However, if there has any 
benefit from the cooperation, the VVs may willing cooperate with 
others to decrease the cost. In this paper, we restrict attention to 
bargaining policies which performed by VVs themselves – that is, 
policies that induce an equilibrium in which all VVs are best off by 
perform the strategic concession game [9]. Our contributions can 
be summarized as follows.

• First, we have detailed the composition and architecture of VV. 
We have constructed the VV that encompasses both a vehicle 
and its driver, and we have extended the architecture of VV.

• Second, we have shown a revelation principle, which implies 
that restricting attention to bargaining policies is without loss 
of generality. And we also have quantified the efficiency loss 
in this setting using the concession ratio, which is the ratio 
between the concession equilibrium and the socially optimal 
one. Clearly, the Nash equilibrium of the non-cooperative game 
can always be obtained to implementing the full-information 
by VVs. Therefore, the mediation ratio is always bounded from 
above by the price of anarchy (PoA) [10].
• Finally, we have shown that if all cost functions are affine, then 
the concession ratio is at almost 3/2 for the case of two par-
allel links, and is almost at (2m − k)/2(m − k) for the case 
of m parallel links with k accident links. For general (non-
decreasing) cost functions, we show that the concession ratio 
for m parallel links is at almost 2.

The rest of this paper is organized as follows. In Section 2, we 
introduce the virtual vehicle, and describe the basic knowledge of 
strategic concession game. The affine cost function case of conces-
sion ratio is analyzed in Section 3. In Section 4, the con-cession 
ration in general cost function is presented. Finally, we conclude in 
Section 5.

2. Related work

To solve the cooperative routing problem, several approaches 
were designed which can be divided into two categories.

The first category of approaches aims to keep user equilibrium 
and focus on social optimum. These approaches plan and fastest 
path to users via computing the predicted travel time (PPT) of 
road segments. In the previous works, the PPT is related in Green-
shield’s model [11] with anticipated traffic volume (ATV). Such as 
Yamashita et al. [12] used this model to design the Passage Weight 
heuristic which can be generated the contribution of each planned 
path towards ATV. Wilkie et al. [13] first assumes that the traf-
fic volume is stochastic which determined by both historical traffic 
and previously assigned traffic, then they used a similar model to 
relate PTT and ATV except to solve the cooperative routing prob-
lem. Another approach [14] is proposed to compute a few alter-
natives based on real-time traffic and then route the car to the 
path with the shortest PTT based on encounter prediction. Some 
other studies focus on social optimum, whose objective is mini-
mizing the average travel time of a group users not the individual 
travel time. Jindal and Bedi [15] proposed a parallel preemptive al-
gorithm to reduce the average queue length resulting in decrease 
of overall waiting time, which use the Compute Unified Device Ar-
chitecture by harnessing the power of Graphical Processing Units 
in the implementation. Bosch et al. [16] proposed an approach to 
handle a routing request by searching a path minimizing the to-
tal PTT of all previous assigned drivers. Based on Board of Public 
Roads flow-delay model, Lim et al. [17] proposed an approach via 
computing a few route candidates based on real-time traffic and 
investigating the mutually timing influence of users’ route choices 
to optimize the total travel time. In the paper, the proposed al-
gorithm was evaluated using the taxi trajectory data in Singapore 
[18]. Besides, some approaches choose routes are not reference to 
PPT but some heuristic functions. Such as Pan et al. [19] proposed 
an approach to plan and choose first-k shortest paths (KSPs) using 
several heuristics based on previously assigned traffic. To balance 
the traffic volume distribution, EBkSP algorithm in this paper first 
computes the KSPs according to real-time traffic, and then chooses 
the route with the least popularity. In this category of approaches, 
the personal intends are not considered so that drivers may not 
satisfy the recommendations.

The other category is using the online social networking ser-
vices to route cooperatively. Toyota integrates the short message 
social media into the vehicle’s dashboard, and the driver can ob-
tain the route information of others. Stephen et al. [20] presents 
a framework for vehicular social networks where people who are 
physically adjacent to each other construct a periodic virtual so-
cial relation. This is an integration of social and vehicular networks 
whose goal is to virtually build a community for commuters. In 
this works, the authors built a voice chatting system over vehicu-
lar social networks, named RoadSpeak, which can be used by daily 
driving commuters or a group of people who are on a commuter 
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bus or train. Similarly, NaviTweet uses the same way to calculate 
the navigator’s route with driver’s preferences via posting and lis-
tening to traffic related voice tweets. The app Caravan Track [21]
has been designed for a group of vehicles, which allow drivers to 
share vehicle and route information in this group. Caravan Track 
allows members in a same group to track one another’s specific 
entities such as location, speed and direction. Waze is another pop-
ular navigation app which uses crowdsourcing to provide real-time 
routing and traffic information along with functions to improve 
and edit the map itself. Here, social networks are used to send 
predefined push button messages stating incidents like the degree 
of traffic, police speed traps or accidents. For this category of ap-
proaches, the social information is used in the calculation of the 
best route. However, the route recommendations also not accom-
modate human preference factors to the route selection.

In addition, there are some approaches are proposed based on 
agent [22]. Agent-based transportation systems allow distributed 
subsystems collaborating with each other to perform traffic control 
and management based on real-time traffic conditions [23]. There 
are two main existing solution categories for mitigating the huge 
traffic congestion loss based on agent. One is the dynamic opti-
mization of traffic light phases [24]. Another solutions category is 
vehicular route assignment using shortest path finding algorithms 
[25,26]. For example, the well-known vehicle navigation systems 
(e.g., Google Navigation) can calculate “the fastest” route based on 
the current traffic conditions to reduce the travel time for a spe-
cific journey. However, there are two issues in present works. One 
is only few vehicles can coordinate with each other in present ap-
proaches, such VANETs, which cannot solve the widely-area traffic 
jam due to lack of real-time trafic. Another is focus on the co-
ordination between vehicles and traffic infrastructure (e.g., traffic 
lights), but they cannot control each vehicle accurate to coordinate.

In this paper, we address the challenges of cooperative routing 
problem based on vehicle agent-based approach, virtual vehicle, 
which has a parts of driver’s knowledge and can replace the driver 
to make decision in cloud. In this approach, VVs adapt the strategic 
concession game to negotiate with each other.

3. Model and preliminaries

3.1. Virtual vehicle

VV is the image in cyber space (such as cloud) of the hu-
man and vehicle in physical space. This image includes the fea-
tures and characteristics of human and vehicle. VV embodies the 
microcosmic behavioral features of driver and vehicle during the 
driving. And VVs can interact directly with each other in cyber 
space by providing traffic service and sharing sensing data co-
ordinately, which can solve the bottleneck of communication in 
physical space.

Like the agent bridge the gap between cyber and physical [27], 
the VV can make decisions to replace driver, and have the detailed 
of driver information: preferences (such as which lane the driver is 
likely to select) and route plans are together considered as driver’s 
behavior.

3.1.1. The composition of VV
Since the proposed VV should make decisions to replace driver, 

it needs detailed driver information: preferences (such as which 
lane the driver is likely to select) and route plans are together 
considered as driver’s behavior. In order to effectively describe and 
obtain the personalization navigation, we construct the VV that en-
compasses both a vehicle and its driver as shown in Fig. 1. Form 
the figure, the same vehicle with different drivers can form dif-
ferent VVs, similarly, different vehicles with the same driver can 
form different VVs. The VV has the artificial intelligence which 
Fig. 1. The composition of VV.

Fig. 2. The IoV architecture based on VV.

can make decision according to the dynamic traffic information, 
Therefore, each virtual vehicle only corresponds one combination 
of driver vehicle. VVs can both locally sense data and directly ac-
cess social network data and physical sensor data from the cloud. 
And it can communicate with the corresponding human and vehi-
cle through the existing telecommunication systems, such as LTE. 
Navigation systems and traffic apps can connect with VVs through 
the network communication in cloud.

3.1.2. The IoV architecture based on VV
We describe the IoV architecture based on VV as shown in 

Fig. 2. In the architecture, VV can communicate with the corre-
sponding human and vehicle through the existing telecommunica-
tion systems [28,29], such as LTE. In the information space, navi-
gation systems and traffic apps can connect with VVs through the 
network communication.

VV can interact with other VVs, navigation systems and traffic 
apps in the cloud, where it is not limited by communication and 
computation resources. VV can obtain big-picture real-time traf-
fic data, both sensed locally and from the cloud; by interacting 
with other VVs, VVs can predict other drivers’ behavior and proac-
tively work to plan a route. VVs for driverless vehicles can make 
decisions about path planning and about interaction with other ve-
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hicles; VVs for common vehicles can help drivers make decisions 
by mining other drivers’ behavior. By obtaining social and sensor 
data directly from the cloud to learn, and by actively communicat-
ing with other VVs, the VV can coordinate with others to select 
a best route for driver. In other words, the VV acts like a brain, 
allowing a physical vehicle and driver to interact and coordinate 
with others in the cloud; the physical vehicle behaves like an ac-
tuator on the road, acting upon directions from the VV. Control 
actually happens at the virtual level, in the cloud, instead of at the 
physical level, on the road.

VVs in cloud can obtain full-information including traffic infor-
mation and other VVs decisions from the navigation systems and 
traffic apps. Hence, VVs can cooperate with each other to achieve 
a concession equilibrium via strategic concession game, and they 
can choose a more suitable route for driver.

3.2. Preliminaries

Let N = 1,2, ...,n be the set of players, which are the VVs in 
this paper. A nonatomic unit of flow must be passed from a source 
node to a sink node through a parallel links network on a set 
of links L = 1,2, ...,m, and each link can be chosen by an ar-
bitrarily player. Hence, each player has m strategies denoted by 
xi ∈ 1,2, ...,m, the aggregate decisions of all VVs yield a feasi-
ble flow, X = (x1x2...xn). From the example describe in Section 1, 
we know that each vehicle’s travel time is decided by all vehi-
cles choices, and the cost function of VV i can be denoted by 
ϕi(x) = ϕi(xi, ..., xi, ..., xn). The social cost of a given tuple of cost 
functions and flow is given by cost(X) = ∑n

i=1 ϕi(x). We consider 
a Strategic Concession Game (SCG) in which VVs have incomplete 
information regarding the cost function on the link. We call all 
games that follow the description above, SCG, and focus on the 
concession model.

In non-cooperative game, there exists Nash Equilibrium (NE) 
when all players denoted (xN E

1 , xN E
2 , ..., xN E

n ), such as in the ex-
ample described in Section 1, the travel time expectations are 
two NEs in Case 1 and Case 2, respectively. Let S j ∈ [0, xN E ], 
j ∈ 1,2, ...,n denotes the discount of player j from its NE. Then 
the concession principle is that player i executes concession if its 
discount satisfies:

Si =
{

αi S j, if αi S j ≤ xN E
i ;

xN E
i , if αi S j > xN E

i .
(1)

where αi ∈ R denotes the offer from player i.
We further endow the game with an informed, benevolent VVs 

who observe the realization of cost functions before any flow is 
routed, and can communicate with each other. Hence, all players 
can execute the SCG to achieve a new equilibrium via communica-
tion. However, players how make decision in SCG? What principles 
players should be obeyed? The following we discuss the detail of 
SCG principles [30].

Principle 1. The offer from player i has more attractive than all 
other players, i.e., for ∀ j(�= i) ∈ {1, 2, ..., n}, if

αi S j/xN E
i

S j/xN E
j

>
α j Si/xN E

j

Si/xN E
i

⇔ αi

xN E
j

xN E
i

> α j
xN E

i

xN E
j

⇔ αi > α j

(
xN E

i

xN E
j

)2

.

Principle 2. We say a player is winner if its offer has more at-
tractive other players. If the player i is a winner, other players 
must receive the offer αi . Hence, the aim of other player j(�= i) ∈
{1, 2, ..., n} is choose the maximum Si when the winner i gives 
the offer αi . And when the player j making concession, the player 
i must reduce its discount, i.e., Si = αi S j .
Principle 3. If αi
xN E

j

xN E
i

= α j
xN E

i

xN E
j

for all j(�= i) ∈ {1, 2, ..., n}, the player 

i is the winner if it satisfies, for ∀ j(�= i) ∈ {1, 2, ..., n}, it has {
U W

i (αi), U L
j (αi)

}
≥

{
U W

i (α j), U L
j (α j)

}
, where

U W
i (αi) = ϕi(xN E

1 , ..., xN E
i − αi S j(αi), ..., xN E

j − S j(αi), ..., xN E
n ),

U L
j (αi) = ϕ j(xN E

1 , ..., xN E
i − αi S j(αi), ..., xN E

j − S j(αi), ..., xN E
n ).

Otherwise, select another player as the winner via random device.

Principle 4. If the offer αi from the winner i satisfies U W
i (αi) <

U L
i (αi

(
xN E

j

xN E
i

)2

), the player j can replace i to be a new winner. 

If player j does that, it can select an arbitrary αP
i if its satisfies 

U W
i (αP

j

(
xN E

j

xN E
i

)2

) ≤ U L
i (αP

j ).

Principle 5. If αm
i > α0

i , and player i give the discount offer αs
i , 

then player j has a right to be a winner via selecting an offer 

αP
j which satisfies U L

i (αP
j ) ≥ min

{
U W

i (αs
i ), U L

i (αs
i

(
xN E

j

xN E
i

)2

)

}
. Or 

player i to be the winner and its offer αQ
j is selected by player 

j which satisfies U W
i (αQ

i ) ≥ U W
i (αs

i ). For i, j ∈ {1, 2, ..., n}, i �= j, 
α0

i and αm
i can be described as follows.

α0
i = max

⎧⎨
⎩αi ∈ R+|U W

i (αi) = U L
i (αi

(
xN E

j

xN E
i

)2

)

⎫⎬
⎭ ,

αm
i = arg max

αi≥α0
i

{
U W

i (αi)
}

.

In those principles, the Principle 1 and 2 defined a player how 
to be a winner, and Principle 3 limits the benefits between win-
ner and loser. Otherwise, Principle 4 and 5 can prevent the hostile 
offer.

Each VV can be able to use his knowledge of cost realizations 
to maximum the benefit, but he cannot compel VVs to take his 
advice. Hence, VVs can perform SCG with each other to achieve a 
concession equilibrium (CE).

Definition 1. Given an aggregate offer � = {α1, α2, ..., αn}, if there 
is no player change its offer and all players agree the present ben-
efit, we say the � = {α1, α2, ..., αn} is a concession equilibrium 
(CE).

Obviously, there may more than one CE in SCG due to the CE is 
decided the offer of winner. As we shall soon show, in some cases 
the unconstrained social optimal flow cannot be implemented as a 
CE. To measure the difference from the optimal solution, we intro-
duce the concession ratio (CR), defined as the ratio of the expected 
costs of CE flow and the globally optimal flow.

Definition 2. Give a CE � = {α1, α2, ..., αn}, suppose the corre-
sponding decisions X = (x1x2...xn), the concession ratio (CR) with 
respect to is defined as:

C R(�) = E�[cost(X)]
E[cost(Xoptimal)] .

The globally optimal decisions known by all VVs, but they may 
not make that decision due to some VVs cannot obtain a satisfac-
tory benefit, but the optimal can be calculated according to the full 
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information of VVs and flow. Hence, we can use the CR to measure 
the difference between SCG and other approaches. To understand 
our approach more convenience, we show several more properties 
of our models:

Lemma 1. In the non-cooperative games, if the decisions of all players 
are NE, and the CR is not the optimal, then if players cooperate and per-
form a SCG, a new CE can be achieved, and the CR cloud be better than 
NE.

Proof. Assume the NE is X N E = (xN E
1 xN E

2 ...xN E
n ), C R(X N E ) >

C R(Xoptimal). Then, players perform SCG and players give the of-
fers. According to the Principle 1, 2 and 3, there is a winner and 
other players would calculate their offer, until achieve a CE which 
implies the benefits of players are increased. Hence, the globally 
cost could be decreased, and the CR decrease �

From the Lemma 1, we know that the globally of CE from the 
SCG is better than NE from non-cooperative games. In the SCG, 
players may give the different offers, and the discounts vary from 
different players, hence there exists more than one CE in a same 
CE, and we have the following results.

Lemma 2. In the SCG, there may exist K CEs {C E1, ..., C Ek}, for an arbi-
trary C Ei , i = {1, 2, . . . , k} with the corresponding aggregate decisions 
Xi , and the CR satisfies

C R(Xoptimal) ≤ C R(Xi) < C R(X N E).

From the Lemma 1, we know C R(Xi) < C R(X N E ). According to 
the Principle 4 and 5, there is no any player can provide a hos-
tile offer, hence the decisions cannot be better than the globally 
optimal decisions, then the results of Lemma 2 can be obtained.

4. Affine cost function

In the full-information case, VVs in same link have same travel 
time, if the cost functions in each link only decided by the number 
of VVs affine cost function in this paper, i.e., the cost functions in a 
no accident road is n/N , and with accident road is 2n/N . We show 
that the concession ratio bounded away from the PoA in the case 
of two links, and for any fixed number of links. We begin with the 
case of two parallel links.

Proposition 1. The CR of SCG with affine cost function on two links is at 
most 3/2.

Proof. Consider N VVs in the full-information case with two links 
with the accident probability p in each link, and link 1 has an acci-
dent, the cost functions of the two links is ϕ1(X1) = (2 

∑
X1

1)/N
and ϕ2(X2) = (

∑
X2

1)/N , then the NE of non-cooperative game 
is X N E = {xN E

i |xN E
i = 2p(1 − p), i = 1, 2, ..., N}. Then, all VVs per-

form the SCG and give the offers � = {α1, α2, ..., αn}. Because of 
the offer of VV should make the all benefits of players increasing, 
there must exist at least one VV changes its selection. Assume the 
player 1 is winner, then according to the Principles 3 of SCG, oth-
ers should compute their benefits and make a new decision. Since 
their benefits increase, they must agree with the concession, then 
the cost could be less than the X N E . According to definition of CR, 
we have

C R(X) = (6n2 − 4Nn + 2N2)p(1 − p)/N2

,

(4/3)p(1 − p)
where n denote the number of players which selection the link 1. 
Since the Principle 4 and 5 limited the hostile offer, hence the ben-
efits should be higher than NE, in other words the cost should 
decrease and we have:

C R(X) = (6n2 − 4Nn + 2N2)p(1 − p)/N2

(4/3)p(1 − p)
≤ 2p(1 − p)

(4/3)p(1 − p)

= 3

2
. �

VVs know all other VVs’ decisions and the accident information, 
the SCG can be performed if there are VVs willing concession, then 
all VVs can decrease the cost. From Proposition 1, the bound of CR 
in SCG can be obtained, i.e., in the full-information case with the 
affine cost function, the CR in SCG has the upper bound 3/2 and 
the lower bound 1.

Proposition 2. The CR of SCG with affine cost function on two links can 
achieve at 1, if all VVs has no any selfish behavior and seek to maximize 
their benefit cooperatively.

Proof. The main objective of SCG is that player maximize its ben-
efit via concession from the NE. In the non-cooperative games, 
players not always satisfy the benefits in the case of NE, such as 
the Case 2 in the example in Section 1. If all players willing to co-
operate with each other, then the SCG can be performed. From the 
offers � = {α1, α2, ..., αn}, assuming player i is the winner, then 
we have

U L(αi) = ϕ(xN E
1 − s1(αi), ..., xN E

i

− αi

N∏
j=1, j �=i

s j(αi), ..., xN E
N − sN(αi)),

U W
i (αi) = ϕi(xN E

1 − s1(αi), ..., xN E
i

− αi

N∏
j=1, j �=i

s j(αi), ..., xN E
N − sN(αi)).

Since the benefit only decided by the VVs’ decisions, and there 
only two selections for VVs, hence the benefit can be described as 
follows.

U L(αi) = w1(xN E
1 − s1(αi)) + · · · + (xN E

i − αi
∏N

j=1, j �=i s j(αi))

N

+ · · · + w N(xN E
N − sN(αi))

N
,

where w j ∈ {0, 1}, and w j = 1 denotes VV i and VV j have the 
same decision, otherwise w ji = 0. Then the first order of benefit 
is:

∂U L(αi)

∂ S j
= w j − αi

∏N
k=1,k �=i,k �= j sk(αi))

N
= 0,

j(�= i) ∈ {1,2, . . . , N}.
To solve the above equations, we have α j/αi = 1 if player j has 
the same selection with player i, and α j/αi = (2 

∑
X1

1)/(
∑

X2
1)

if player j has different selection with player i. When the final 
equilibrium achieved, then the discount can be obtained s(α j) =
2α j x

N E
j

α j+2α j
, and xN E

j = 2p(1 − p), we have s(α j) = 4
3 p(1 − p). According 

to the definition of CR, the CR is 1 and the proof is finish. �
From Proposition 2, the optimal equilibrium can achieve and 

each player can obtain the maximum benefits when all players 
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willing cooperate in the full-information case. In other words, VVs 
can minimize their travel time cooperatively, and the social cost 
also cloud be achieved.

Now we complement this positive result by a negative one, 
showing that when m is large. For each link, the cost functions 
in a no accident road is n/N , and with accident road is 2n/N . Be-
fore presenting the results of m is large, we introduce a helpful 
lemma.

Lemma 3. Consider N VVs with m links, if there is a link has an accident, 
VVs can select a link random in the full-information case. In the non-
cooperative games, there only exist one NE, i.e., xN E = mp(1 − p)m−1 .

In the non-cooperative games, each VV knows the traffic infor-
mation. They will choose a link random in the rest m − 1 links, 
then the N VVs cloud be distribute in m − 1 links uniformly. Then, 
assume the i link has an accident, the NE can be calculated:

xN E =
(

m
1

)⎛
⎝∑

L/i

N/(m − 1)

N

N

m − 1

⎞
⎠ p(1 − p)m−1

= m

m − 1
p(1 − p)m−1.

We are now ready to present our negative result, by construct-
ing an affine SCG to observe the number of links how impacts the 
CR.

Proposition 3. The CR of SCG with affine cost function is irrelevant with 
the number of links, and the CR also is at most 2m−1

2(m−1)
.

According to the Lemma 3, we can obtain the NE of non-
cooperative games in the full-information case. Then, we can cal-
culate the optimal equilibrium, i.e., 2/3mp(1 − p)m−1, similar with 
Proposition 1, we have

C R(X) ≤
m

m−1 p(1 − p)m−1

2m
2m−1 p(1 − p)m−1

= 2m − 1

2(m − 1)
.

Now, we extend the one accident link to accident links, and the 
results of the general case of affine cost function can be described 
as follows.

Theorem 1. For the m links with k(≤ m) accident links, N VVs perform 
the SCG with affine cost function, the value of CR is limited in the range 
of 

[
1, 2m−k

2(m−k)

]
.

Proof. In the SCG, each VV willing cooperative to obtain maximum 
benefit which implies the minimum travel time in our considering 
case. According to Proposition 2, we know that VV can make the 
best decision to cooperate with each other, and the optimal deci-
sions can be obtained when all VVs make the best the decision. 
Hence, the minimum of CR is 1 according to its definition. Simi-
lar with the proof of Proposition 2, we can calculate the expected 
costs of each VV as follows:

(
m
k

)
((2m − k)( n−Nk

(2m−k)
)

2 − 2k(m−k)N2

(2m−k)
)pk(1 − p)m−k

k(m − k)pk(1 − p)m−k N2
,

then the optimal costs is 
(

m
k

)
2

2m−k . In the non-cooperative 

games, we can obtain the NE is 
(

m
k

)
1

m−k . According to the defi-

nition of CR and the Lemma 2, the maximum of CR is 2m−k
2(m−k)

. �
5. General cost function

As established in the previous section, when the cost functions 
are restricted to the set of affine functions, the MR in m links with 
k accident links can be converged the optimal cost.

In this section, we discuss the MR in case of general cost func-
tion. For the cost function, we know the travel time cannot de-
crease with the number of vehicles increasing in a road, hence the 
general cost function must be a non-decrease function. Then, we 
show the results has some difference with the affine cost function 
case. Before presenting the results, we fist introduce a definition of 
partition.

Definition 3. For the m links and with k accident links, assume the 
cost functions of m links are c1 ≤ c2 ≤ ... ≤ cm , we can divide the 
m links into l sets L1, L2, ..., Ll such that:

• The links i, j in the same set if ci(n) = c j(n), n denotes the 
number of VVs;

• For arbitrary two sets Li and L j , i �= j, they satisfy Li ∩ L j = ∅;
• For ci ∈ Lh and c j ∈ Lk , if h < k, ci(n) < c j(n).

Note that the link in same set has same cost function, and 
VVs cloud choose the links of Ll random in non-cooperative game, 
hence the NE could be c1 (N\ |L1|), |L1| denotes the number of 
links in Ll .

Lemma 4. Let c1, c2, ..., cm be a cost functions than can be divided into 
a partition L1, L2, ..., Ll . In the SCG with N VVs, let n1, n2, ..., nm be the 
optimal number of VVs in the corresponding links, and let 

∑m
i=1 ci(ni)

= γ . Then 
∑m

i=1 nici (ni) ≤ γ N/ |L1|.

Proof. Since n1, n2, ..., nm are the optimal number of VVs in links, 
hence we have

nici (ni) = n jc j
(
n j

)
,∀i, j ∈ {1,2, ...,m}.

According to the definition of partition, the cost functions satisfy 
c1 ≤ c2 ≤ ... ≤ cm , hence n1 ≥ n2 ≥ ... ≥ nm . Then, we have follow 
result:

m∑
i=1

nici (ni) ≤
m∑

i=1

n1ci (ni),

m∑
i=1

nici (ni) ≤ n1

m∑
i=1

ci (ni) = n1γ .

Besides, in the NE of non-cooperative game, the number of VVs in 
each link of Ll is N/ |L1|. Since the nl is the number of VVs in each 
link of Ll in the optimal case, hence n1 ≤ N/ |L1|. �

In the full-information case, VVs cooperate with each other to 
decrease the cost using SCG. When VVs perform the SCG, they will 
calculate the discount according to the offers, then they exchanged 
their offers until achieve a CE, and we use the CR to measure the 
CE referred to its definition. For the CR with the non-decrease cost 
function case, we have the following result.

Theorem 2. For the m links with k(≤ m) accident links, N VVs perform 
the SCG with non-decrease cost function c1, c2, ..., cm, and assume it can 
be divided into a partition L1, L2, ..., Ll . Then, the upper bounds of CR can 
be limited in 

[
max

{
1,

|L1|
m

}
,2

]
.

Proof. In the non-cooperative game, the NE is c1 (N\ |L1|), and ac-
cording to the Lemma 4, then we have
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C Rmax = c1 (N\ |L1|)(∑m
i=1 nici(ni)

)
/N

≥ c1 (N\ |L1|)
γ N |L1|/N

,

C Rmax = |L1| c1 (N\ |L1|)
γ

≥ |L1| c1 (N\ |L1|)
mc1 (n1)

≥ |L1|
m

.

According to the SCG, VVs make discounts d1, d2, ..., dm to achieve 
a new CE, and we have c1 (N\ |L1|) = c1 (n1) + d1. Then, we have

C Rmax = c1 (N\ |L1|)(∑m
i=1 nici(ni)

)
/N

= Nc1 (N\ |L1|)
mn1c1 (n1)

≤ Nc1 (N\ |L1|) + mn1d1

mn1(c1 (n1) + d1)
,

C Rmax ≤ N

mn1
+ d1

c1 (n1) + d1
.

Since c1 = min {c1, c2, ..., cm} and nici(ni) = n jc j(n j), hence ni ≥
N/m, then

C Rmax ≤ N

mn1
+ d1

c1 (n1) + d1
≤ N

mN/m
+ 1 = 2.

From the definition of CR, we know that C R ≥ 1, hence we have 
CR can be limited in 

[
max

{
1,

|L1|
m

}
,2

]
. �

6. Conclusion

In this paper, we first apply a concept of virtual vehicle in IoV, 
which is an image of driver and vehicle, to solve the optimal route 
choice problem when drivers willing cooperate with each other. 
We study a class of strategy concession game with parallel-links 
routing in which VVs have incomplete information about the costs 
of the links and other VVs decisions. We define the concession 
ratio: the ratio between the concession equilibrium arising from 
cooperation recommendations and the social optimum, which is 
always bounded from above by the PoA. We find that the conces-
sion ratio is at most 3/2 for two links with affine cost functions, 
the concession ratio is at most 2 for general non-decrease cost 
functions. The main open question left by our work is verity the 
concession ratio in the road networks.
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