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Abstract—Vehicular edge computing (VEC) is an innovative
computing paradigm with an exceptional ability to improve the
vehicles’ capacity to manage computation-intensive applications
with both low latency and energy consumption. Vehicles require
to make task offloading decisions in dynamic network conditions
to obtain maximum computation efficiency. In this paper, we
analyze computation efficiency in a VEC scenario, where a vehicle
offloads its tasks to maximize computation efficiency as a tradeoff
between computation time and energy consumption. Although,
it is quite a challenge to ensure the quality of experience of the
vehicle due to diverse task requirements and the dynamic wireless
conditions caused by vehicle mobility. To tackle this problem, a
computation efficiency problem is formulated by jointly optimiz-
ing task offloading decision and computation resource allocation.
We propose a Mobility-Aware Computational Efficiency based
Task Offloading and Resource Allocation (MACTER) scheme
and develop a distributed MACTER algorithm that provides the
best solution. We further consider the fifth-generation new-radio
vehicle-to-everything communication model, i.e., cellular link
and millimeter wave, to enhance the system performance. The
simulation outcomes demonstrate that the proposed algorithm
can efficiently enhance computation efficiency while satisfying
computing time and energy consumption constraints.

Index Terms—Computation resource allocation, mobility, task
offloading, Vehicular Edge Computing

I. INTRODUCTION

W ITH the progression in the Internet-of-Vehicles (IoV)
and wireless technologies, smart vehicles, i.e., au-

tonomous vehicles, are becoming increasingly popular, which
has led to new applications with advanced features. Au-
tonomous vehicles need to extract meaningful information
from the massive amount of data collected by sensors, which
comprehend the environment, and make decisions depending
on the constantly occurring changes [1]. While, cutting-edge
technologies require high-performance computation and strin-
gent real-time response, i.e., vision-based object detection,
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self-driving, and immersive gaming [2], [3]. Nevertheless,
these applications are usually computation-intensive, energy-
consuming, and delay-sensitive. It is tough to manage the
computation demands of such complex applications due to the
limited computation capability of vehicles. Thus, it results in
bottlenecks and makes it extremely difficult for the vehicles to
meet their resource requirements and guarantee the required
quality of experience (QoE) level [4].

Cloud computing infrastructure is in place for many years
to deal with resource-intensive applications. However, cloud
resources are placed far away from users, causing excessive
and expensive bandwidth issues, not supporting delay-sensitive
applications, and security and privacy problems [5]. Conse-
quently, it is a requisite to bring the resources close to the
network edge to fully support dynamic scalability, network
processing efficiency, and modify computing paradigms design
[6]. In this regard, Multi-access Edge Computing (MEC)
complemented cloud computing and enabled users to reduce
latency and save energy by offloading computation towards
the edge servers [7]. However, for high mobility scenarios
due to a short validity period of high-speed mobility, the
conventional MEC-based offloading approach is incompetent
in the vehicular environment [8].

Nowadays, much work is being done to merge MEC
technology into a vehicular network in academics and in-
dustry. Specifically, Vehicle edge computing (VEC) is the
MEC technology associated with the vehicular network. VEC
is extremely useful for carrying out computation-intensive
and time-constrained tasks under vehicular networks [8], [9].
Through offloading complex computational tasks over VEC
servers, computing delay and energy consumption of vehicular
applications can be drastically minimized while mitigating the
chance of network congestion. In addition, sometimes it is not
feasible to offload tasks to edge servers as it uses extra energy
and consumes more time [10]. The challenge, however, is to
make the offloading decision while taking overall computation
and communication costs into account.

On the other hand, vehicles face certain unprecedented con-
straints, although they are capable of executing more compu-
tational tasks. These constraints include inadequate computing
capacity and high energy consumption [11]. Owing to these
constraints, some of the typical challenging scenarios are:
• As vehicles have limited computation and energy re-

sources, how to meet vehicles’ real-time stringent time
and energy demands?

• In the case of autonomous vehicles, where many
computation-intensive applications require a huge amount
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of energy usage, how can vehicles guarantee their mileage
durability?

• Coupled with the above points, that autonomous vehicles
generate a massive amount of data from their environment
at each moment, how can it be managed, transmitted, and
stored effectively?

• As the vehicular computing capability cannot cope with
the ever-increasing computing demands, how can the high
cost of hardware upgrades be borne?

All of the above-mentioned challenges are related to time
constraints and energy consumption. The task offloading ap-
proach offers feasible solutions to tackle the aforementioned
problems.

A. Related Work

VEC and task offloading have been a trending topic in recent
years. Many researchers have done a great deal of significant
work in this domain [12]–[16]. For instance, in [12], Gu et al.
presented a distributed context-aware task offloading approach
based on matching theory. The authors minimized the system
delay by developing two heuristic algorithms. Wu et al. [13]
proposed an edge-cloud collaborative reinforcement learning
based scheme to find optimal routes with a low communication
overhead. Zhou et al. [14] introduced a shared dedicated short-
range communication and fifth-generation (5G) communica-
tion framework to support immersive experience vehicular
network. Dai et al. [15] analyzed the integration of offloading
with load balancing and considered resource allocation for a
multi-user multi-server vehicular network. Zhou et al. [16]
examined the offloading problem by presenting a distributed
low-complexity approach to identify offloading the optimum
part of the task, which depends on the latency and energy
consumption in the vehicle computing, task transmission, task
processing, and task handover. These studies are primarily
concerned with high-reliability and low-latency networks and
did not address the energy-saving issues, particularly with
limited battery Electrical Vehicles (EVs).

Many studies in edge computing examine the energy effi-
ciency problem by considering task offloading and resource
allocation. Deng et al. [17] optimized the resource allocation
between cloud and fog in order to minimize the energy utiliza-
tion with various latency constraints. Yuan et al. [18], focused
on the problem of profit optimization for edge-cloud service
providers. The authors formulated this problem by considering
the constraint of maximum response time, and the revenue and
the penalty cost for each task are determined through service-
level agreements. In [19] proposed a task offloading scheme to
minimize the total energy consumed by both mobile devices
and edge servers. The authors solved this problem by a hybrid
meta-heuristic algorithm to produce a near-optimal solution.
Chen et al. [20] formulated the stochastic task offloading
problem in a sliced radio access network as a Markov decision
process to maximize the long-term utility performance by
considering the time-varying communication qualities and
computation resources. Nevertheless, the aforementioned work
primarily targets static mobile networks and can not be used
directly for extremely dynamic vehicle networks. Although

some of the works applied MEC for vehicular networks [9],
[21], [22], primarily focused on the offloading issue from a
perspective of latency minimization and did not analyze the
vehicular energy efficiency concerns, especially with limited
battery capacity. On the other hand, some studies [23]–[26]
focused on performing computational offloading to reduce
vehicle energy consumption. In addition, the majority of the
prior solutions depend on centralized methods of optimization,
where the computational complexity increases dramatically
with the number of vehicles. It is much convenient to deal with
the issue from a distributed aspect, considering complexity and
scalability issues. There is also a lack of a unified distributed
approach to tackle vehicle latency and energy-saving issues
related to vehicle mobility considerations.

In addition, the game theory can answer the decision-
making problem between the multiple players to achieve the
goal. The task offloading studies relying on game theory
was considered in [27]–[31]. In [27], the authors introduced
a game-theoretic analysis for multi-user and developed a
distributed task offloading algorithm that achieves a Nash
equilibrium (NE). Liu et al. [28] considered the task offloading
problem to minimize communication burden on the edge
server. They used game theory to select suitable channels and
make the optimal offloading decisions. In [29], a multilevel
offloading approach according to the Stackelberg game theory
was designed, which maximizes both vehicle and server rev-
enues. The authors in [30] presented a Bayesian coalition game
to enhance the computing resource utilization and minimize
energy consumption in a vehicular cloud. In [31], Huang et al.
analyzed a task offloading problem in which parked vehicles
act as servers and use blockchain to offload computation in
a decentralized manner. The authors defined and solved this
problem by utilizing the Stackelberg game framework in order
to minimize total payments for users. In [32], Zhan et al.
presented a task offloading approach by combining proximal
policy optimization and convolutional neural networks. The
authors considered tasks without stringent latency require-
ments or execution priority.

However, some prior studies analyzed to optimize the task
offloading or computation resource allocation strategies with-
out simultaneously optimizing them. Similar to the studies pre-
sented in [27], [33], the authors only analyzed task offloading
but did not incorporate the computation resource allocation
since each vehicle generally receives various computational
tasks in real-time that need different computational resources.
Besides, the tasks in [34] and [35] ignored the optimization
of task offloading, in which entire tasks were offloaded to
the MEC server. In task offloading, vehicles share limited
computing and communication resources and each vehicle
must determine where its task will be processed and whether
it is appropriate to offload. Therefore, to improve system
performance, the task offloading and resource allocation ap-
proach must be optimized. Moreover, most of the studies on
vehicular task offloading did not examine the task offloading
and resource allocation with both stringent latency demands
and energy requirements and ignored this significant factor.
Unlike the preceding task offloading techniques for VEC,
we develop a multi-vehicle task offloading game considering
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the task deadline and energy consumption constraints while
keeping in view the vehicle mobility. We propose a distributed
mobility-aware computational efficiency based task offloading
and resource allocation algorithm, and guarantee that decision
of each vehicle will converge to the NE.

B. Contributions

In this article, we analyze the computation efficiency
problem for EVs, i.e., autonomous vehicles, where an EV
traveling along an urban road decides where to offload its
task, to enhance the computation efficiency. The tasks are
independently generated by various applications with different
characteristics such as task data size, required CPU cycle,
and energy consumed. Besides, the vehicles’ mobility causes
the transmission rate to vary periodically over time. These
factors result in dynamically changing the vehicular task com-
putation time and energy consumption. Owing to the highly
dynamic scenario, designing an efficient offloading approach
is quite challenging. As a performance metric, we introduce
the computation efficiency, which is the ratio of computed
bits to the total energy consumed, it can achieve time and
energy consumption minimization. The key contributions of
this article are listed as follows:

1) This paper aims to improve computation efficiency by
optimizing the task offloading and resource allocation
in compliance with EV’s time and energy constraints.
The computation efficiency is the ratio of computed
bits to energy consumption and can lead to an efficient
vehicles’ time and energy utilization.

2) A Mobility-Aware Computational Efficiency based Task
Offloading and Resource Allocation (MACTER) scheme
is proposed to make optimal decisions. A game-
theoretical method is adopted for making the offloading
decision. While the resource allocation is performed by
the Lagrange multiplier technique. In addition, we use
5G new-radio vehicle-to-everything (NR-V2X) based
millimeter wave (mmWave) technology which improves
overall system performance.

3) A distributed MACTER algorithm is designed for our
scheme. It runs within the offloading strategies and
resource allocation iteratively to achieve NE. We per-
form extensive simulations to check and validate the
proposed approach. The experimental findings reveal
that by comparing with benchmark approaches, the pro-
posed algorithm effectively improves the computation
efficiency while satisfying both the task computation
time and energy consumption.

C. Paper Organization

The remaining parts of this article are structured as follows.
In Section II, we present the system model, and the problem
formulation is discussed in Section III. The mobility-aware
computational efficiency based task offloading and resource
allocation scheme and a distributed algorithm are provided in
Section IV. The numerical results are provided in Section V.
Finally, Section VI concludes this article.

II. SYSTEM MODEL

In this section, we introduce the network topology and the
communication model, followed by the computation model.
Then, the vehicle and VEC utility functions are discussed in
detail. Table I represents all the notations to be used in this
section.

TABLE I: Frequently Used Notations

Symbols Description
Gi

b(φ) Function of steering angle
γ Maximum rate of RSU
γi Minimum between γ & γ

′
i .

γ
′
i Data uplink rate of vehicle i.
r Radius of the RSU
Ci Computation resource needed to complete a task
αin
i Task data size
tmax
i Maximum tolerable delay
tstayi Vehicle’s stay time in RSU
tptdi min{tmax

i , tstayi }, means, it is practical tolerable delay of
a task

tloci Local computing time
tveci VEC offloading time i.e., Transmission + Processing
eloci Local energy consumption
eveci Vehicle energy consumption while offloading to VEC
Ei Entire energy consumption
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Fig. 1: The Task offloading under both cellular and mmWave
technologies in VEC Computing Network.

A. Network Topology

Fig. 1 illustrates our proposed VEC network, which com-
prises of N number of vehicles. Here, a unidirectional road
is considered in an urban area, where M roadside units
(RSUs) with equal communication range r are located along
the road, each having a VEC server consisting of F com-
puting resource. Where the id set of RSUs is represented
as M = {1, 2, 3, ...,M}. Accordingly, we can distribute the
road segment into M segments, and each vehicle is randomly
distributed in the urban area. We also consider the vertical
distance between the road and RSU, which is denoted by
e. The vehicles’ set is represented as N = {1, 2, 3, ..., N}.
Each vehicle has a computation task, either computed locally
or offloaded to the VEC server. The tasks are offloaded to



4 IEEE INTERNET OF THINGS JOURNAL, VOL.

VEC servers via RSU. The vehicles can connect to RSU m,
i.e., m ∈ M, when they move within the mth segment.
In addition, Fig. 2 represents the architecture of the VEC
computing network.

We then define vehicular offloading strategy, where D =
{di|di ∈ {dloci , dveci }, d

j
i ∈ {0, 1}, i ∈ N , j ∈ {loc, vec}} as

the vehicular offloading decision. The offloading decision set is
denoted as A = {loc, vec}, which represents the decision for
local or VEC offloading, respectively. Moreover, di = dji = 1
implied the completion of the vehicle i task by choosing the
decision j, on the contrary di = dji = 0.

1) Mobility Model: We assume that each vehicle enters
the road segment at a random speed. The vehicle speeds are
independent and identically distributed. Generally, the speed
of each vehicle can vary with time as it moves along the road.
Therefore, each vehicle is assigned a random speed υ chosen
from the Gaussian distribution, and each vehicle maintains its
given speed. In order to avoid the negative speed of vehicles,
a truncated Gaussian distribution is used. Further, we apply a
truncated Gaussian probability density function (PDF), which
is defined as:

f∼υ =
2fυ(υ)

erf(Vmax−µ
ϑ
√

2
)− erf(Vmin−µ

ϑ
√

2
)
, (1)

where fυ(υ) = 1
ϑ
√

2
exp(− (υ−µ)2

2ϑ2 ) is the Gaussian PDF,
Vmax = µ+ 3ϑ is the maximum velocity, and Vmin = µ−3ϑ
is minimum vehicular velocity, erf(.) is error function, µ is
the average speed, and ϑ is defined as a standard deviation of
vehicular speed [36]. Thus, according to (1), a corresponding
speed (Vmin ≤ µυ ≤ Vmax) is given by

µυ =
1∫ Vmax

Vmin

f∼υ (υ)
υ dυ

=
erf(Vmax−µ

ϑ
√

2
)− erf(Vmin−µ

ϑ
√

2
)

2
ϑ
√

2π

∫ Vmax
Vmin

exp(− (υ−µ)2
2ϑ2

)

υ dυ

(2)

where the values for µ and ϑ are derived according to the
measurements formulated in [37].

Moreover, while offloading the task, it must be ensured that
the task is completed before the vehicles switch from their
corresponding RSU to another RSU and the computation task
delay is satisfied. For this, we need to find the stay time of a
vehicle, which is described as follows:

2) Vehicle’s Stay Time: Since the RSU communication
radius r, and the vertical distance e between the RSU and
road are defined. Besides, the υi is the velocity of a vehicle.
Thus, we can derive the stay time of the vehicle i as:

tstayi =
2
√
r2 − e2

υi
(3)

We define the stay time as the time vehicle i stays within the
communication range of its corresponding RSU m.

B. Communication Model

In the vehicle to infrastructure (V2I) communication, we
consider that the vehicles interact with the RSUs according
to Mode-1’s cellular links of 5G NR-V2X using cellular
and mmWave communication links. We consider that each

vehicle and RSU have mmWave as well as cellular network
facilities, which are both installed with multiple antennas
enabling communication over mmWave and 5G links. The
communication models are dependent upon a certain distance
between the vehicle and RSU. Since the mmWave-based
V2X could achieve an ultra-high rate of up to 7 Gbps using
mmWave within a range of 300 [38]. Moreover, according
to [39], the distance between two network components is
recommended from 100 m to 200 m. Therefore, we assume
the mmWave communication range to 150 m and cellular
link range to 200 m. The following subsection describes both
cellular and mmWave links in detail.

1) Cellular mode: In V2I communication, the cellular link
lies under the Mode-1 of NR-V2X [40]. 5G NR-V2X is
developed in 3GPP Rel. 16, introducing the first V2X standard,
based on 5G NR that was standardized in 3GPP Rel. 15. The
NR V2X is capable of supporting advanced V2X applications
with more stringent QoS requirements than those supported
by Cellular V2X [41]. The 5G NR-V2X in the 3GPP context
ensures improved performance in terms of throughput, latency,
reliability, connectivity, and mobility [42]. The implementation
of the gNBs in this paper is considered as standalone node
connected to pure 5G system core and access components,
which are collocated with user plane function (UPF) and
V2X application server. While the RSUs are assumed to
be implemented as standalone UE-type RSU node following
3GPP Rel.16 NR-V2X standards. The data transmission rate
between vehicle i and the RSU m is derived as:

γ
′

i = Wuu log2

(
1 +

pi,m[rd sir e − si]
−δ|h|2

σ2
uu

)
, (4)

where Wuu is the channel bandwidth, pi,m is vehicle i’s
transmission power over its corresponding RSU. The distance
traveled by vehicle is [rd sir e − si], where si denotes the
vehicle i current position and the factor δ is the path loss
exponent [43]. In addition, the uplink channel is modeled as
the Rayleigh fading channel defined as |h|2 [44], and σ2

uu is
the Gaussian noise.

2) mmWave mode: To exploit the benefits of utilizing
mmWave in V2I communication mode, each vehicle and RSU
are assumed to be installed with directional antennas, and the
vehicle i antenna gain is modeled as a function of steering
angle is given as φ. Furthermore, the antenna gain Gib(φ) of a
generic mmWave is expressed as:

Gib(φ) =

{
Gmaxi , if |φ| ≤ φb
Gmini , otherwise ,

(5)

where φ is the angle off to boresight direction, Gmaxi and
Gmini are the array gains of main lobe and side lobe, respec-
tively, and φb is the main lob’s beam-width. Moreover, the
transmission rate of vehicle i ∈ N and RSU m ∈ M is
calculated in γ

′

i as represented in (6), where Wmm is the
mmWave channel bandwidth and can be expressed as:

γ
′

i = Wmm log2(1 + SNRi,m), (6)
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where, SNRi,m is the SNR between vehicles and the associ-
ated RSU in mmWave mode is defined as:

SNRi,m = (pi,m − σmm − 10log10(Wmm) + Gmaxi Gmaxm

− 10ζlog10([rdsi
r
e − si])− 69.6− ρα, (7)

where the ζ is the path loss exponent and ρα is the shadow
fading set to 3 dB in line of sight scenarios [45].
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Fig. 2: Architecture for VEC Computing Network.

C. Computation Model

We assume that each vehicle contains a computation task
ϕi = {Ci, αini , tmaxi }, where Ci = ~iαini , αini represents the
data size of the task , Ci is required computation resource
to complete the task ϕi, ~i is the service coefficient that
defines the relationship of Ci and αini , and tmaxi is the task
maximum tolerable delay. Therefore, by considering practical
assumption, we can derive from (3) that the practical tolerable
delay of the task must be tptdi = min{tmaxi , tstayi }. This
ensures that while satisfying the task delay constraint, the ve-
hicle remains within the range of connected RSU. We present
local computing and VEC computing to further illustrate the
computation model.

1) Local Computing: When vehicle i computes the task
locally, the computing time and energy consumption rely on its
available resources. It is considered that f loci is the vehicle i’s
computing resource, and it is defined by the vehicles’ onboard
unit capacity. Then, the local computing time tloci and energy
consumption eloci can be obtained by (8) and (9), respectively.

tloci =
Ci
f loci

, (8)

eloci = ςiCi, (9)

where ςi in (9) denotes the consumption of energy per com-
puting unit [23].

2) VEC Computing: When the local computing is not
feasible, then the task is offloaded to the VEC server. Like
many prior studies [29], [34], [46], various applications, i.e.,
speech recognition, the receiving time for computation output
is ignored as the output size is substantially smaller than that
of the input. In this context, tveci shows the VEC execution

time and uplink transmission time of vehicle i, which can be
written as:

tveci =
Ci
fveci

+
αini
γi
, (10)

where fveci represents the assigned computation resource to
vehicle i by VEC and γi is vehicle i accessible data transmis-
sion rate. In addition, and γi = min{γ, γ′i}, where γ is the
RSU’s maximum data rate, and γ

′

i is the vehicle’s i uplink
data rate. The vehicle i energy consumption for transferring
the task to the VEC server is expressed as:

eveci = pi ×
αini
γi

(11)

where, pi in (11) shows the average transmission power
of vehicle i while offloading. Moreover, the entire energy
consumption of the system to execute task i is calculated as:

Ei = eloci + eveci (12)

In this work, we assume the computation capacity of the
VEC server is adequate, and each offloading vehicle can be
allocated fveci computation resource.

Definition 1 Energy-Time Cost (ETC) is defined as the
weighted sum of energy consumption and task executing time.
Therefore, the ETC for vehicle i in local computing is given
by

Kloc
i = ΛEi e

loc
i + ΛTi t

loc
i (13)

where ΛEi + ΛTi = 1, 0 ≤ ΛEi ≤ 1 and 0 ≤ ΛTi ≤ 1
indicate the weights of energy consumption and task executing
time for vehicle i. To fulfill the specific users’ requirements,
vehicles are allowed to select different weights to make their
decisions. For instance, vehicles with energy priorities would
choose a larger ΛEi to save more energy. Meanwhile, when the
vehicle is executing some delay-sensitive applications, e.g.,
object detection, then it is preferable to fix a larger ΛTi for
delay minimization.

Similarly, (14) is represented as the weighted sum of energy
consumption and task execution time. Therefore, the ETC for
vehicle i in VEC computing is defined as:

Kvec
i = ΛEi e

vec
i + ΛTi t

vec
i (14)

D. Utility Functions

In this section, we define a utility function for both vehicle
and VEC offloading. It guarantees the level of satisfaction
that is taken by the vehicle to take offloading decisions. For
the utility function design, we take into account the following
metrics.
• Energy Consumption: Energy consumption is a critical

metric for EVs. Since it is one of the most concerning
issues nowadays. Generally, the utility function is ex-
pected to decrease monotonically with increased energy
consumption. Moreover, the vehicles’ satisfaction should
be greater than zero regarding energy consumption.

• Computing Delay: The task computing delay is also a
significant metric in making a real-time decision. The
vehicle obtains higher satisfaction as the computing delay
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is shortened. Similar to the energy consumption metric,
the computing delay should also be non-negative.

• Computation Resource Cost: Each vehicle that offloads
its tasks to a VEC server must pay for utilizing the
VEC servers’ resources [29], [46]. Besides, a vehicle that
utilizes more computing resources would generate higher
costs.

In addition to VEC computing, a vehicle can also use its
computing resources to handle computing tasks locally without
the need for service payment. However, when the computation
delay and energy consumption of local computing are greater
than the task’s maximum tolerable delay and maximum energy
consumption, likewise, the processing parameters of the VEC
computing do not exceed the maximum tolerable delay, as
well as the vehicles’ maximum energy consumption while
offloading. Therefore, it is essential to guarantee that the
vehicles’ utility should be within the limits of VEC computing.

1) Vehicle Utility Function: The local computing utility
function for vehicle i is represented as:

U loci = ln (1 + ((ΛEi e
loc(max)
i + ΛTi t

max
i )−Kloc

i )+)

−$I((ΛEi e
loc(max)
i + ΛTi t

max
i ) < Kloc

i ), (15)

where I(x) is represented as an indicator function, if x is true,
it is equal to 1, otherwise, it is 0, and $ is used to normalize
the U loci . $ ensures U loci < dveci Uveci when (ΛEi e

loc(max)
i +

ΛTi t
max
i ) < Kloc

i and djiK
vec
i < dveci (ΛEi e

vec(max)
i +ΛTi t

ptd
i ).

Where eloc(max)
i is the task’s maximum energy consumption.

Its value is determined by the highest value of the ςi energy
consumption per computing unit.

2) VEC Utility Function: The VEC computing utility func-
tion for vehicle i is represented as:

Uveci =θi ln (1 + ((ΛEi e
vec(max)
i + ΛTi t

ptd
i )−Kvec

i )+)

− (1− θi)ρvecfveci , (16)

where (x)+ is the max(x, 0) that ensures the satisfaction to be
always greater than zero concerning the processing delay, the
coefficient of weight is represented as θi, ρvec is the computing
resource unit cost of VEC server [46]. Whereas evec(max)

i is
the maximum energy consumption while offloading a task. Its
value is highly dependent on the transmission rate of vehicle
i.

Now, the total network computation efficiency (E) can be
represented as:

E =

N∑
i=1

J∑
j=1

ϕid
j
iU

j
i

Ei
. (17)

III. PROBLEM FORMULATION

Our main objective is to enhance the computation efficiency
of the VEC network as a whole. The computation efficiency
is expressed as the ratio of the total computed bits to the
energy consumption of the EVs. For this, we formulate an
optimization problem to maximize the utility of the system
through optimizing task offloading strategy D and resource

allocation F to eventually improve the overall computation
efficiency and is mathematically expressed as:

P1 : max
{D},{F}

E

s.t. C1 : f loci ≥ 0 ∀i ∈ N ,
C2 : 0 ≤ fveci ≤ dveci F veci , ∀i ∈ N ,

C3 :

N∑
i=1

fveci ≤ F veci , i ∈ N ,

C4 : dloci + dveci ≤ 1, ∀i ∈ N ,
C5 : dji = {0, 1}, i ∈ N , j ∈ {loc, vec}
C6 : djiK

j
i ≤ d

vec
i (ΛEi e

vec(max)
i + ΛTi t

ptd
i )

+ dloci (ΛEi e
loc(max)
i + ΛTi t

max
i ),

(18)

where the constraint C1 is the local computing available
resources that are greater or equal to zero, C2 is used to
assign the available computational resource to the vehicle i
on its corresponding VEC server, and C3 represents the total
VEC computation resource. For each task, one approach can
be selected that is illustrated in C4 and C5. Also, the latency
and energy constraints of each computation task are repre-
sented in C6. Moreover, D = {Dloc, Dvec} is the execution
indicator vector and F = {fvec1 , fvec2 , ..., fvecN } is the resource
allocation.

The optimization (18) is non-convex and is a mixed-
integer programming problem since the objective function
involves sum-of-ratio maximization. To solve it efficiently, a
low complexity MACTER scheme is proposed to analyze the
computation efficiency. As a result, the original problem (18) is
decoupled into two subproblems to tackle both task offloading
decisions and computation resource allocation. The game
theory approach is adopted to make task offloading decisions.
Whereas Lagrange multiplier technique and bisection method
are used to solve the computation resource allocation problem,
which further ensures the near-optimal resource allocation
solution. The game updates the task offloading strategies after
the resource allocation stage until NE is achieved. Once
all vehicles take the offloading decisions, the computation
resource allocation of VEC computing needs optimization
to maximize all the offloading vehicles’ utilities. Through
mutual iteration, the system enters into a steady state and
achieves the near-optimal solution. Therefore, decoupling the
computational efficiency problem enables us to handle the
problem, which will ultimately attain a near-optimal solution
like our original problem defined in (18).

IV. MOBILITY-AWARE COMPUTATIONAL EFFICIENCY
BASED TASK OFFLOADING AND RESOURCE ALLOCATION

(MACTER) SCHEME

In this section, we propose a MACTER scheme to maximize
computation efficiency. The computation efficiency depends
upon the optimal task offloading and computation resource
allocation. Therefore, under the achieved computing resources
allocation, the offloading strategy is obtained in this scheme,
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and resource allocation is observed in the context of a pro-
vided offloading strategy. Besides, to maximize computation
efficiency, the utility functions are the key attributes to be
considered in decision making. Moreover, the detail of the
scheme is as follow:

A. Task offloading

In the task offloading, the vehicles’ offloading decision
depends upon its offloading demands as well as the offloading
strategies of other vehicles. The game theory is viable to
resolve the problem regarding decision-making as it provides
a robust model to overcome the clash of interests among the
vehicles in real-time to make the best decision.

1) A Game Approach: The multi-vehicle computing prob-
lem is formulated as a task offloading strategy game. All
vehicles have computation tasks and are considered players
in this game, while players compete for resources in order
to maximize their utility. The task offloading strategy game
is described as Γ = {N , (Di)i∈N , (Ui)i∈N }, where vehicle
set is N and the set of offloading strategy of vehicle i is
denoted by Di. For vehicle i, the utility function is given as
U(di, d−i), where d−i = (d1, ..., di−1, di+1, ..., dN ) denotes
the other vehicles’ offloading strategies except vehicle i. The
objective of each vehicle is to choose a valuable offloading
strategy (dveci + dloci = 1) to optimize its utility such as:

max
di

U(di, d−i) = dveci Uveci + dloci U loci . (19)

Then, a NE is presented to fix the problem of the task
offloading strategy game.

Definition 1: A strategy D∗ = (Dvec∗,Dloc∗) is the NE, if
we have the following relationship for any vehicle i ∈ N .

U(d∗i , d
∗
−i) ≥ (di, d

∗
−i). (20)

The NE is achieved when no vehicle intends to unilaterally
break the NE steady-state to earn the extra benefit. For
the offloading strategy, the existence of NE is verified by
introducing an exact potential game. There is always a NE in
every potential game given the finite strategy sets and having
the finite improvement property (FIP). Furthermore, for each
vehicle the exact potential game accepts a potential function
ψ(d) while the offloading strategy unilaterally changes from
di to d

′

i and d−i ∈ qj 6=iAj , di, d
′

i ∈ Di. The following
relationship can be derived as:

U(di, d−i)− U(d
′

i, d−i) = ψ(di, d−i)− ψ(d
′

i, d−i) (21)

The potential function of a player ψ(d) reveals exactly the
unilateral modification performed by the utility function [27].

Lemma 1: The task offloading strategy in (22) always
converges to the NE with a function ψs of exact potential
game.

ψ(d) =

dloci

N∑
n=1

(ln(1 + (ΛEn e
loc(max)
n + ΛTn t

max
n )−Kloc

n )+)

−$I((ΛEn e
loc(max)
n + ΛTn t

max
n ) < Kloc

n )) + (1− dloci )

×
{
θi ln(1 + ((ΛEi e

vec(max)
i + ΛTi t

ptd
i )− dveci Kvec

i )+)

− (1− θi)(dveci ρvecf
vec
i )

+

N∑
n=1,n6=i

(
ln(1 + ((ΛEn e

loc(max)
n + ΛTn t

max
n )−Kloc

n ))+
)

−$I((ΛEn e
loc(max)
n + ΛTn t

max
n ) < Kloc

n ))
}
. (22)

At the time vehicle i offloads a task to the VEC server or
compute it locally, according to (22), it can be observed as:

ψ(dveci , d−i)− ψ(dloci , d−i) =
N∑

n=1,n6=i

U locn + θi ln
(

1 + ((ΛEi e
vec(max)
i + ΛTi t

ptd
i )−Kvec

i )+
)

− (1− θi)ρvecfveci −
N∑
n=1

(ln(1 + ((ΛEn e
loc(max)
n + ΛTn t

max
n )

−Kloc
n )+))−$I((ΛEn e

loc(max)
n + ΛTn t

max
n ) < Kloc

n ))

= U(dveci , d−i)− U(dloci , d−i),

(23)

A potential function is introduced, as expressed in (22) [47],
[48], to prove the existence of NE in the task offloading strat-
egy game. Then, for each vehicle i(i ∈ N ), d−i ∈ Πj 6=iDj ,
the potential function is illustrated to meet (21) when i updates
its current offloading decision d

′

i to di. It can be shown from
the findings of (22) and (23) that the potential function ψ(d)
always satisfies (21) for any of two offloading decisions of
vehicle i. Thus, the task offloading strategy game is an exact
potential game.

Moreover, the potential game updates the task offloading
strategies after the resource allocation stage until NE is
achieved. Once all vehicles take the offloading decisions, the
computation resource allocation of VEC computing needs op-
timization to maximize all offloading vehicles’ utility. Through
mutual iteration, the system enters into a steady-state and
achieves the near-optimal solution.

B. Computation Resource Allocation

Here, the computation resource allocation is determined
optimally for vehicles to offload their tasks. This scheme aims
to maximize the vehicles’ utility by offloading the tasks to
the VEC server. While the vehicle tasks are offloaded to the
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VEC, the resource allocation must be optimally acquired in
the following ways:

max
F

∑
i∈No

θi ln(1 + ((ΛEi e
vec(max)
i + ΛTi t

ptd
i )−Kvec

i )+)

− (1− θi)ρvecfveci

s.t. C7 : tveci ≤ tptdi ,

C2, C3 ∀i ∈ No, (24)

Lemma 2: The above problem presented in (24) is convex.
Proof: solved in Appendix A.
As (24) is convex, by using the partial Lagrange Function, the
problem can be expressed as:

L(F ,Ω) =∑
i∈Nm

θi ln(1 + ((ΛEi e
vec(max)
i + ΛTi t

ptd
i )−Kvec

i )+)

− (1− θi)ρvecfveci + Ω(

N∑
i=1

fveci − F veci ), (25)

where Ω is the Lagrange multiplier associated with the VEC
server’s computing resource constraint, and Ω ≥ 0.

Finally, using the KKT conditions for optimally achieving
computation resource allocation F∗. Through differentiating
L(F ,Ω) referring to fveci (i ∈ No), and makes it equal 0,
it can be achieved as describe in (26). Next, we employ a
bisection algorithm to obtain near-optimal resource allocation
solution fvec∗i , as shown in Algorithm 1.

C. The Distributed MACTER Algorithm

In this section, we design a distributed MACTER Algorithm
by taking advantage of the task offloading strategy game and
computation resource allocation for our proposed scheme.
The objective of the proposed algorithm is to maximize
computation efficiency.

In Algorithm 1, We show how resources are allocated and
offloading decisions are taken. The vehicles decide to carry out
the computation task by selecting an offloading strategy, such
as dveci = 1 for VEC computing or dloci = 1 for computing
the task locally in the vehicle. Algorithm 1’s Lines 1-10
represent the computation resource allocation part. For getting
the near-optimal computation resource allocation solution,
the Lagrange multiplier technique and the bisection method
are leveraged. Where the KKT conditions are applied for
obtaining resource allocation F∗. By differentiating L(F ,Ω)
as represented in (25) according to fveci (i ∈ No), and make it
equal to 0, it can be carried out as (26). Then, we applied a
bisection algorithm to achieve the resource allocation solution
fvec∗i . In addition, the second part of Algorithm 1 from Lines
11-23 represents the offloading strategy. For all vehicles, by
calculating fvec∗i based on (26), Kloc

i and U loci according to
(13) and (15), and Kvec

i and Uveci by putting fvec∗i taken from
the first part of the Algorithm 1 into (10) and (16), respec-
tively. Then, conditional to the maximum tolerable delay and
maximum energy consumption, the offloading decisions are
made concerning the utility function. Finally, the Algorithm
1 gives the output as resource allocation F∗ and offloading
strategy Uopt∗i .

Algorithm 1: Resource Allocation and Offloading
Strategy
Input : Vehicles N = {1, 2, ..., N}, task

ϕi = {Ci, αini , tmaxi }, i ∈ N , Maximum
tolerance ε > 0 , Ωmin = Ωmax = Ωbound

Output: F∗ = {fvec∗1 , fvec∗2 , ..., fvec∗n } and Uopt
∗

i

1 while Ωmax − Ωmin > ε do
2 Ω = (Ωmin + Ωmax)/2, and compute fveci

3 according to put Ω into (26)
4 a = 1+(ΛEi e

vec(max)
i +ΛTi t

ptd
i )−(ΛEi e

vec
i +ΛTi

αini
γi

)

b = − Ciθi
(1−θi)ρvec+Ω∗

fvec∗i =
Ci +

√
C2
i − 4ab

2(a)
(26)

if
∑N
i=1 f

vec
i < F veci then

5 Ωmax = Ω
6 else
7 Ωmin = Ω
8 end
9 end

10 By putting Ω into (26), we obtain the optimal
computation resource allocation

11 for all Vehicle i ∈ N do
12 Calculate fvec∗i by (26), calculate Kloc

i and U loci
according to (13) and (15) respectively, calculate
Kvec
i and Uveci by putting fvec∗i into (10) and

(16) respectively.
13 if (ΛEn e

loc(max)
n + ΛTn t

max
n ) < Kloc

i &&

(ΛEi e
vec(max)
i + ΛTi t

ptd
i ) < Kvec

i then
14 Uopti = −∞, dloci = 0, dveci = 0
15 else
16 if Uveci > U loci then
17 dloci = 0, dveci = 1
18 else
19 dloci = 1, dveci = 0
20 end
21 end
22 end
23 Uopt

∗

i = {Uopt
∗

1 , Uopt
∗

2 , ..., Uopt
∗

N } can be derived.

Algorithm 2 provides a detailed description of the proposed
scheme. The algorithm carries out the iterative process. An
initial offloading strategy is considered at first. Subsequently,
offloading strategy is updated by comparing the size of Uveci

and U loci . The Uopti is obtained from Algorithm 1. Based
on the current offloading strategy, the utility of each vehicle
is calculated separately in each iteration. To improve the
respective utility, each vehicle then updates its offloading
strategy. When no vehicle has the urge to change its offloading
decision, the iterative process is terminated. Then for all
vehicles, the computation efficiency is obtained. Our scheme
achieves the near-optimal solutions (task offloading decision
and computation resource allocation for IoV), whereby NE
of task offloading decision is made based on the proposed
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algorithm. The NE indicates that each vehicle obtains its final
offloading decision, and the vehicles will never differ from
this offloading strategy. The vehicles choose the most suitable
offloading strategy for task completion based on the MACTER
algorithm. Finally, the Algorithm 2 provides computation
efficiency as an output by achieving near-optimal computation
resource allocation F∗ and final offloading strategy D∗.

The computational complexity of Algorithm 1 is represented
as O(log2((Ωmax − Ωmin/ε) +N)). Besides, the while-loop
in Algorithm 2 needs a constant number of iterations as C to
converge, thus the computational complexity of the MACTER
scheme is O(CN(log2((Ωmax − Ωmin)/ε) +N)).

Algorithm 2: The Distributed MACTER Algorithm.
Input : Vehicle N = {1, 2, ...N}, task

ϕi = {Ci, αini , tmaxi }, i ∈ N , vehicle speed v
∼ CN(U, σ2), vehicle position si, initial
offloading strategy DΘ

Output: The computation efficiency E, the
computation resource allocation F∗, and
offloading strategy D∗

1 Allocate computation resource fvec∗i to the vehicles by
Algorithm 1, calculate Uveci based on (16)

2 for each vehicle i ∈ N do
3 if U loc > Uveci then
4 dveci = 0, dloci = dloci
5 else
6 dveci = 1, dloci = 0
7 end
8 D(t) = {Dloc(t), Dvec(t)}
9 Calculate E according to (17)

10 end
11 t = t+ 1
12 while D(t− 1) 6= DΘ do
13 DΘ = D(t− 1)
14 i = 1
15 while i ≤ N do
16 d

′

i = dveci = 1, and compute
Uupdate(i) = U(d

′

i, d−i(t− 1)) based on
Algorithm 1

17 i = i+ 1
18 end
19 for all vehicle i ∈ N do
20 if vehicle i has maximal Uupdate, or

dΘ(i) = dveci = 1 then
21 di(t) = d

′

i

22 else
23 di(t) = di(t− 1)
24 end
25 end
26 t = t+ 1
27 end

V. NUMERICAL RESULTS

This section provides numerical results and a discussion of
our proposed algorithm. We assume five RSUs, each having

TABLE II: SIMULATION PARAMETERS

Parameter Value
mmWave Bandwidth 200 MHz [49]
Cellular link Bandwidth 20 MHz
The arrival rate of vehicles 0.1 (veh/s)
The coverage length of RSU 200 m
The number of RSUs 5
The computation resource price for VEC 0.03 ($/Ghz)
The average vehicular velocity 40 Km/h
Transmission power of vehicle pi 1.3W
RSU main lobe gain Gm 15db
Vehicle main-lobe gain Gi 15db
Path loss exponent ζ 3.2
Energy consumption per computing unit [2 ∗ 10−10, 2 ∗ 10−6]w

a VEC server placed along a unidirectional road in an urban
area. In our simulation, we consider the computation resource
of each vehicle as [10, 15] GHz. We set the input data size
[20, 60] KB, the service coefficient ~i in the range of [0.2, 0.4]
GHz/KB, and the weights of the task executing time ΛT and
energy consumption ΛE are set as 0.5 if not specified. For
each computation task, the maximum latency constraint takes
a uniform distribution [0.2, 1]s. The vertical distance between
RSU and road is considered e = 100 m. We further set the
cellular link and mmWave communication range to 200 m and
150 m, respectively. We assume that RSU broadcasts beacon
messages, including the computation resource information,
to the vehicles in its communication range, and once the
connection is established, the communication goes into unicast
mode between RSU and vehicle [41]. Also, all the vehicles
share their relevant information periodically with the RSU.
In our considered scenario, we leveraged mmWave connectiv-
ity, since these message sizes are minimal compared to the
higher bandwidth used in 5G NR-V2X, therefore, we ignore
communication overhead. The simulations are performed in
MATLAB by implementing the mobility model presented in
Section II. The detailed setting of other simulation parameters
is summarized in Table II.

The proposed MACTER scheme is evaluated against the
following baseline schemes.

• Computation Task Offloading and Resource Allocation
(CTORA) scheme [27], that only optimizes the offloading
decisions in a given computing resource.

• Computation Offloading Decision Optimization (CODO)
scheme in which the tasks are executed either locally or
offloaded to the VEC server. The main difference between
CODO and MACTER schemes is that CODO does not
consider mmWave communication.

• Heuristic Scheme [9], in which tasks are offloaded to
VEC server when the energy and time constraints of a
vehicle are not being satisfied while doing computation
locally. This process is done without the consideration of
other vehicles.

Fig. 3 represents the relationship of vehicular velocity
and practical tolerance delay tpdti , we consider the vehicle i
maximum tolerable delay as 1s. Here, we analyze the vehicular
velocity from 40 km/h to 100 km/h. The practical tolerance
delay is inversely proportional to the velocity of the vehicle. It
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Fig. 3: The task practical tolerable delay versus various
vehicular velocity in km/h.

can be observed from Fig. 3 that the time vehicle i remains in
the corresponding RSU becomes less as compared to the task’s
maximum tolerable delay, as the vehicular velocity increases.
The delay of the task will be changed to tstayi . Conversely,
when the vehicular velocity is low, the delay constraint is equal
to the maximum tolerable delay for each task tmaxi . It intends
to ensure smooth task transmission in the VEC network.
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Fig. 4: The computation efficiency versus required computing
data size.

Fig. 4, shows the comparison results between all four
schemes, including the proposed scheme, CTORA, CODO,
and Heuristic. In Fig. 4, the computation efficiency decreases
with an increase in the required data bits for all the schemes.
This implies that the energy required for computation is rising
with the increase in the data size. The proposed algorithm
evidently outperforms other schemes. Furthermore, we can
note that with the small data size, the performance of the
proposed scheme is closer to others except the heuristic
scheme. In the heuristic approach, the offloading decision is

made when the vehicle does not meet local computation time
and energy constraints. The graph declines very slightly in the
heuristic approach as the data grows. Moreover, the optimal
choice for a relatively small data size is to compute locally.
Since offloading may not be the best option as it is dependent
on channel gain and available bandwidth between vehicle
and RSU. Also, the energy consumption of local computing
decreases more significantly than the energy consumption of
offloading. Consequently, it may require a longer time and
higher energy for small data. On the other hand, it can be
a more suitable choice to offload it to a robust VEC server
with large data size. Therefore, from the perspective of optimal
resource allocation, it can be observed that it is best to process
them on the VEC server for large tasks.
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Fig. 5: The computation efficiency versus the varying number
of vehicles for communication performance.

Fig. 5, illustrates the impact of communication performance
on computation efficiency with the varying number of vehicles.
Here, we fixed the vehicles’ speed to 40 km/h and task data
size to 1 kbits and considered the random location of vehicles
within an RSU to examine the effect on the communication
performance between vehicles and RSUs. In particular, we
can see from Fig. 5 that performance degradation occurs in
all the schemes as the number of vehicles gradually increases.
This result is interpreted by the fact that the communication
performance is affected by numerous factors, such as the task
data size, vehicles’ location, number of vehicles in each V2X
communication technology (i.e., cellular and mmWave). Most
significantly, It can also be observed that the SNR decreases
with the increased vehicles’ distance from the RSU as a
consequence, degrades the performance. The CODO scheme
performs worst because it does not consider the mmWave
communication, and the heuristic scheme performance is better
than CODO even when the vehicles are above 90. From
the communication perspective, it can be observed that the
proposed scheme gives the best performance for any number
of vehicles in an RSU compared to other schemes.

Fig. 6, shows the computation efficiency versus the vary-
ing number of vehicles with different speed. To show the
difference, we set the vehicle speed 30 km/h, 50 km/h, and
70 km/h, as shown in Fig. 6a, 6b, and 6c, respectively.
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(a) Vehicle speed 30 km/h.
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(b) Vehicle speed 50 km/h.

2 4 6 8 10 12 14 16 18 20

No. of Vehicles

0

1

2

3

4

5

6

7

C
o

m
p

u
ta

ti
o

n
 E

ff
ic

ie
n

c
y
 (

b
it
s
/J

o
u

le
)

10
8

MACTER

CTORA

CODO

Heuristic

(c) Vehicle speed 70 km/h.

Fig. 6: Computation Efficiency with different speed in the case of varying the number of vehicles.

For convenience in comparison, we set the equal task size
for different vehicles. While compared with the behaviors
of different schemes, we observe that the proposed scheme
obtains the highest computation efficiency among all the given
speeds. The other schemes also increase as the no. of vehicle
increase. We can observe that the computation efficiency of
all schemes decreases rapidly as the vehicles’ speed increases.
Moreover, it can be noticed that when the speed increases, then
the heuristic algorithm grows since the tptd becomes lesser
and vehicles stay for less time in their corresponding RSU.
Therefore, vehicles prefer to compute locally.
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Fig. 7: The computation efficiency with the different weightage
of the energy and time for maximum tolerable delay.

In Fig. 7, the computation efficiency with different energy
and time weight factors are illustrated as ΛE and ΛT , re-
spectively. It can be noted that with various weight factors,
the vehicles can achieve different computation efficiency. If
the vehicle is running out of the battery and have sufficient
maximum tolerable delay then it prefers to offload, when
ΛE = 0.8 & ΛT = 0.2 and when ΛE = 0.2 & ΛT = 0.8
then time factor becomes more significant in decision making
with stringent delay requirements. Moreover, when ΛE = 0.5
& ΛT = 0.5, then the vehicle notice both the aspects of
energy and time and make the offloading decision accordingly.

From Fig. 7, we can observe that the weight factor can affect
the overall system performance, as well as fairness when
considering the computation efficiency.
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Fig. 8: The computation efficiency versus maximum tolerable
delay.

In Fig. 8, we compare the computation efficiency and the
maximum tolerable delay tolerance of different algorithms.
When the tolerable delay rises, the total energy consumption
declines, and the performance gap in all other algorithms
and the MACTER algorithm grows larger. The results show
that compared with the CTORA, CODO, and Heuristic algo-
rithm, the proposed algorithm can significantly increase the
computation efficiency over the considered range of tmaxi ,
by about 17%, 19%, 91%, respectively. Note again that the
computation efficiency of the CTORA and CODO algorithms
almost coincide with the estimated range of tmaxi values. In
fact, since the computation capacity of the VEC server is far
greater than a vehicle and while delay tolerance is stringent,
the vehicles are more willing to transfer more of their tasks to
the VEC server to minimize latency. Moreover, the Heuristic
approach converges when the tmaxi equal to 3 but with much
less computation efficiency compared to other schemes.

Fig. 9, presents the impacts of the VEC resource price on
computation efficiency when using different algorithms. It can
be observed that the entire computation efficiency of these ap-
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Fig. 9: The computation efficiency versus unit price of the
VEC resource.

proaches drops down significantly as the price increases. Since
the VEC server has more computing resources, more tasks can
be offloaded to the VEC server as the density of the vehicles
increases. Consequently, the computation efficiency for a large
number of vehicles is more prone to be influenced by the
variation in the price of the VEC resource and decreases with
the increase in price. From Fig. 9, we can observe that when
the price is 0.25$, the computation efficiency of all schemes
converge except the heuristic scheme, where it converges at
0.2$. The reason is that according to system utility, the VEC
utility decreases, as the price of VEC resources is high.

VI. CONCLUSION

In this paper, we studied a computation efficiency problem,
where a vehicle intends to offload its tasks to maximize
the computation efficiency in terms of a tradeoff between
computation time and energy consumption. We formulated
the computation efficiency problem by jointly optimizing task
offloading and computation resource allocation. To achieve
a distributed task offloading, we utilized a game-theoretic
method. We presented a mobility-aware computational effi-
ciency based task offloading and resource allocation (MAC-
TER) scheme and developed a distributed MACTER algorithm
that provides the near-optimal solution. We also used the
5G NR-V2X communication model, i.e., cellular link and
mmWave, to improve the system performance. The numerical
findings revealed that the proposed algorithm can improve
computation efficiency while meeting computing time and
energy consumption constraints. For the future, we would
extend our work with more complex scenarios in which precise
information about the channel and vehicle state is unknown.
To this end, we will examine how to integrate machine
learning techniques by incorporating 5G NR and mmWave
communications to improve long-term delay performance to
further strengthen the task offloading process.
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APPENDIX A
A PROOF OF LEMMA 2

To demonstrate that the problem is convex in (24), we have
shown that the utility function Uveci is a concave function of
fveci . We can obtain Uveci by differentiating with respect to
fveci ,

∂Uveci

∂fveci

=

θi

1 + ((ΛEi e
vec(max)
i + ΛTi t

ptd
i )−Kvec

i )

Ci
(fveci )2

− (1− θi)ρvec,

(27)

The second-order derivative of Uveci with respect to fveci is
expressed as

∂2Uveci

∂(fveci )2
=

θiCi
(fveci )3

(
2
(

1 + ((ΛEi e
vec(max)
i + ΛTi t

ptd
i )−Kvec

i )
)

+ Ci
fveci

)
(

1 + ((ΛEi e
vec(max)
i + ΛTi t

ptd
i )−Kvec

i )
)2

(28)

where (ΛEi e
vec(max)
i + ΛTi t

ptd
i )−Kvec

i > 0 and ∂2Uveci

∂(fveci )2 < 0.
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