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Abstract Dimension reduction techniques are very important, as high di-
mensional data is ubiquitous in many real world applications, especially in
this era of big data. In this paper, we propose a novel supervised dimension-
ality reduction method, called appropriate points choosing based DAG-DNE
(Apps-DAG-DNE). In Apps-DAG-DNE, we choose appropriate points to con-
struct adjacency graphs, for example, it chooses nearest neighbors to con-
struct inter-class graph, which can build a margin between samples if they
belong to the different classes, and chooses farthest points to construct intra-
class graph, which can establish relationships between remote samples if and
only if they belong to the same class. Thus, Apps-DAG-DNE could find a
good representation for original data. To investigate the performance of Apps-
DAG-DNE, we compare it with the state-of-the-art dimensionality reduction
methods on Caltech-Leaves and Yale datasets. Extensive experimental demon-
strates that the proposed Apps-DAG-DNE outperforms other dimensionality
reduction methods and achieves state-of-the-art performance for image classi-
fication.
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1 Introduction

In the era of Big Data, an increasing amount of image data are being gen-
erated on the Internet through daily social communication. Most real data
are high-dimensional, such as image data. High-dimensional data significantly
increases the time and space requirements, and also brings the curse of di-
mensionality problem. So it is necessary to develop efficient dimensionality
reduction methods that can scale to massive amounts of high-dimensional da-
ta. Dimensionality reduction techniques have attracted considerable interest
in machine learning [1,2] which not only reduce the computational complexity
and avoid the curse of dimensionality problem, but also improve the classifica-
tion performance in the subspace. Here, we focus on subspace learning, which
pursuits the low-dimensional representation of the original high-dimensional
data.

Dimensionality reduction methods are usually divided into unsupervised
methods and supervised methods according to the availability of class label
information. Popular unsupervised dimensionality reduction methods include
principle component analysis (PCA) [28], locally linear embedding (LLE) [4].
It is generally known that PCA obtains the projection matrix by maximizing
the total scatter of training samples. LLE reconstructs a given point by its
neighbors to represent the local geometry structure and then seeks a low-
dimensional embedding. However, LLE cannot perform mapping for an unseen
data, which is called the out-of-sample problem. To cover the drawback of LLE,
many new methods have been proposed, such as locality preserving projection
(LPP)[3], neighborhood preserving embedding (NPE) [5], Both LPP and NPE
find an embedding to preserve local structure and can be simply extended to
unseen samples. However, all above methods cannot work well in classification
tasks since they do not utilize the class label information.

In order to solve the problem of unsupervised method, many supervised
methods are proposed, such as linear discriminant analysis (LDA) [6,7], dis-
criminant neighborhood embedding (DNE) [8], marginal Fisher analysis (M-
FA) [12,13], locality-based discriminant neighborhood embedding (LDNE) [9],
discriminant neighborhood structure embedding (DNSE) [11], double adja-
cency graphs-based discriminant neighborhood embedding (DAG-DNE) [10]
and others [15–17,20,18,21,19,14]. LDA can find the projection matrix by
maximizing the ratio between the inter-class scatter and the intra-class scat-
ter. However, LDA fails to explore the manifold structure of the given data
when projecting them into a lower-dimensional subspace. MFA, as an exten-
sion of LDA, by constructing inter-class and intra-class adjacency graphs to
preserve the local information, which is able to efficiently solve the drawbacks
of LDA. DNE constructs an adjacency graph to distinguish between homoge-
neous points and heterogeneous points to keep the local structure. However,
DNE fails to preserve the detailed position relationship between the samples
and their neighbors. Thus, the performance of DNE in the low-dimensional
subspace is not good enough for classification tasks. LDNE optimizes the d-
ifference between the inter-class distance and the intra-class distance under
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constructing the adjacency graph being different from DNE by endowing d-
ifferent weights. DAG-DNE constructs two adjacency graphs, aiming to keep
the neighbors compact if they belonging to the same class while neighbors
belonging to different classes are separable in the subspace. In DAG-DNE, it
chooses neighbors to construct inter-class and intra-class graphs in the same
way, which finds the nearest neighbors. Thus, it can build a margin between
different neighbors if and only if they belong to the different classes when
building inter-class graph, and preserve the structure of nearest neighbors if
they belong to the same class when constructing intra-class graph. However,
during the classification task, we should focus on samples that are separable
in the high-dimensional space, and the representations of these two points in
the subspace are close to each other if they belong to the same class rather
than preserving the local structure.

To achieve this goal, this paper presents a new supervised subspace learning
method, called Appropriate points choosing DAG-DNE (Apps-DAG-DNE).
In Apps-DAG-DNE, it chooses points to construct inter-class and intra-class
graphs in different ways, that is, it chooses the nearest neighbors to construct
inter-class graph, which can build a margin between different neighbors if and
only if they belong to the different classes, and chooses the farthest points
to construct intra-class graph, which can establish relationship between two
farthest points if they belong to the same class. Thus, Apps-DAG-DNE could
establish relationship among two remote samples and find a good projection
matrix for them.

The reminder of this paper is organized as follows. Section 2 introduces
the related works on DNE, LDNE and DAG-DNE. In Section 3, we propose
the new method Apps-DAG-DNE. Section 4 reports simulation experimental
results and Section 5 concludes this paper.

2 Related Works

In this section, we briefly review DNE [8] and its variant LDNE [9] and DAG-
DNE [10]. Given a set of samples {(xi, yi)}Ni , where xi ∈ Rd, yi ∈ {1, 2, · · · , c}
is the class label of xi, d is the dimensionality of samples, N is the number
of training samples, and c is the number of classes. We try to learn a linear
transformation mapping which can project the original data from the high
d-dimensional space into a low r-dimensional subspace (r � d) in which the
samples are denoted as {(vi, yi)}Ni . Specifically, the linear transformation can
be defined as

vi = PTxi (1)

where P ∈ Rd×r is the projection matrix.

2.1 Discriminant neighborhood embedding

DNE is a supervised subspace learning method, which aims to project the
samples from high-dimensional space into a low-dimensional space, and makes
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the gaps between different samples as wide as possible if they belong to the
different classes and as close as possible if they belong to the same class. For a
sample xi, N

w
K(xi) and N b

K(xi) denote its K homogeneous and heterogeneous
neighbors, respectively. The DNE method has the following steps:

1) Construct the adjacency graph by using K-nearest neighbors. The ad-
jacency weight matrix F is defined as:

Fij =

+1, xi ∈ SwK(xj) or xj ∈ SwK(xi)
−1, xi ∈ SbK(xj) or xj ∈ SbK(xi)
0, otherwise

(2)

2) Feature mapping: Optimize the following objective function:{
min

∑
ij

||vi − vj ||2Fij

s.t. PTP = I.
(3)

with simple algebra, the minimization problem can be rewritten as{
min
P

tr{PTXLXTP}
s.t. PTP=I

(4)

Where L = D −W and Dii =
∑
jWij . The projection matrix P can be

optimized by computing the minimum eigenvalue solution to the generalized
eigenvalue problem as follows:

XLXTP = λP (5)

where P is composed of the optimal r projection vectors corresponding to the
r smallest eigenvalues.

2.2 Locality-based discriminant neighborhood embedding

Different from DNE, LDNE uses a heat kernel function instead of 1 or 0 to
adopt the adjacency graph and aims to find an optimal projection matrix by
maximizing the difference between the inter-class scatter and the intra-class
scatter. Similar to DNE, the LDNE method has the following steps:

1) Construct the adjacency graph by using K-nearest neighbors. The ad-
jacency weight matrix S is defined as:

Sij =


− exp(

−||xi−xj ||2
β ), xi ∈ SwK(xj) or xj ∈ SwK(xi)

+ exp(
−||xi−xj ||2

β ), xi ∈ SbK(xj) or xj ∈ SbK(xi)

0, otherwise

(6)

2) Feature mapping: Optimize the following objective function:{
max
P

tr{PTXHXTP}
s.t. PTP=I

(7)
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Where H = D−S, and D is a diagonal matrix with Dii =
∑
j Sij . The op-

timization problem (7) can also be cast into a generalized eigen-decomposition
problem:

XHXTP = λP (8)

The optimal projection P consists of r eigenvectors corresponding to the
r largest eigenvalues.

2.3 Double adjacency graphs-based discriminant neighborhood embedding

DAG-DNE is a useful linear manifold learning method for dimensionality re-
duction and preserves the local geometric reconstruction relationship of data,
which tries to make the gaps among submanifolds for different classes as wide
as possible and for same class as compact as possible in the subspace, simul-
taneously. First, DAG-DNE is to construct two adjacency graphs, let Fb and
Fw be the inter-class and intra-class adjacency matrices, respectively.

The inter-class adjacency matrix Fb is defined as

F bij =

{
1, xi ∈ SbK(xj) or xj ∈ SbK(xi)
0, otherwise

(9)

The intra-class adjacency matrix Fw is defined as

Fwij =

{
1, xi ∈ SwK(xj) or xj ∈ SwK(xi)
0, otherwise

(10)

DAG-DNE seeks to find a projection P by solving the following objective
function

{
max
P

tr{PTXGXTP}
s.t. PTP=I

(11)

Where G = Db − Fb −Dw + Fw, and Db and Dw are diagonal matrices
with Db

ii =
∑
j F

b
ij and Dw

ii =
∑
j F

w
ij . The projection matrix P can be found

by solving the generalized eigenvalue problem as follows:

XGXTP = λP (12)

The optimal projection P consists of r eigenvectors corresponding to the
r largest eigenvalues.
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3 Proposed Method

In this section, we develop a novel supervised subspace learning method called
Appropriate points choosing DAG-DNE (Apps-DAG-DNE). As described above,
those methods all choose the nearest points to construct inter-class graph
which can formulate the marginal between samples if and only if they belong
to the different classes, and choose the nearest points to construct intra-class
graph which can preserve the local geometric structure between samples if and
only if they belong to the same class. However, during the classification task,
we should focus on samples that are separable in the high-dimensional space,
but the representations of these two points in the subspace should be close to
each other if they belong to the same class rather than preserving the local
structure.

3.1 Motivation

To clearly illustrate the problem, Fig. 1 gives two ways of choosing points to
construct adjacency graphs. In the figure, there are two ways to find nearest
neighbors to construct adjacency graphs: (1) a1, which is the traditional way
to choose neighbors, and (2) b1, which is the ideal way to choose neighbors.
Then, we also have two results: (1) a2, which is the result of constructing the
adjacency graph using the traditional way to find points, and (2) b2, which
is the result of constructing the adjacency graph using the ideal way to find
points. Our purpose is to make the representations of these two points as close
as possible in the new space if they belong to the same class, whether or not
they are close in the high-dimensional space. However, traditional way has
two shortcomings, on one hand, the traditional way chooses the nearest points
and preserves the local geometric structure by establishing the relationships
of them. Thus, if the two same class samples are remote, they cannot establish
any relationships, and they will not be close in the subspace either. During
the classification task, we should give priority to the samples in the same class
that are remote, as the classification ability of the method will be severely
deteriorated if they are ignored. On the other hand, the inter-class scatter is
larger than intra-class, traditionally. Thus, the effect of intra-class scatter is
very small in the objective function of DAG-DNE, and this will deteriorate the
classification ability of DAG-DNE. The fundamental challenge is determining
how to choose appropriate points to establish relationships in order to achieve
the same result as the ideal way.

3.2 Basic idea of Apps-DAG-DNE

Let {(xi, yi)}Ni=1 be a set of N samples in the multi-class classification task,
where xi ∈ Rd and yi ∈ {1, 2, ..., c}. Our task is to find a subspace, which let
these samples, belonging to the same class, as close as possible in the subspace
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Traditional 

Way

Ideal

 Way

Original data

Appropriate 

neighbors

(a1) (a2)

(b1) (b2)

Fig. 1 Procedure of graph-based subspace learning. (a1) traditional way, (a2) the result
of choosing the nearest neighbors to construct adjacency graph. (b1) ideal way, (b2) the
result of choosing appropriate points to construct adjacency graph. Traditional way makes
the samples close if and only if they are close in the high-dimensional space, and the ideal
result is that the samples should be close in the subspace if they belong to the same class
whether or not they are separable in the high-dimensional space.

even though they are separable in the high-dimensional space. Therefore, we
can not only reduce the complexity, but also improve the classification perfor-
mance.

For a sample xi, AN
w
K(i) indicates the index set of its K homogeneous

points. It is worth noting that, K homogeneous points are its farthest points
rather than its nearest neighbors. AN b

K(i) indicates the index set of its K het-
erogeneous neighbors. In order to describe the relationships between points,
similar to DAG-DNE, we build two adjacency graphs: the inter-class separa-
bility graph Fb and the intra-class compactness graph Fw.

The inter-class separability matrix Fb is defined as:

F bij =

{
1, i ∈ AN b

K(j) or j ∈ AN b
K(i)

0, otherwise
(13)

The intra-class compactness matrix Fw is defined as:

Fwij =

{
1, i ∈ ANw

K(j) or j ∈ ANw
K(i)

0, otherwise
(14)

In the procedure of finding a projection matrix, we utilize the idea that
maximizing the inter-class scatter and minimizing the intra-class scatter simul-
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taneously. First, we define inter-class scatter and intra-class scatter as follows:
the inter-class scatter is

B(P) =
∑
i

∑
i∈ANb

K(j) or j∈ANb
K(i)

||PTxi −PTxj ||

= 2PTX(Db − Fb)XTP
(15)

where Db is a diagonal matrix and its entries are column sum of Fb, i.e.
Db
ii =

∑
j F

b
ij .

The intra-class scatter is

W (P) =
∑
i

∑
i∈ANw

K(j) or j∈ANw
K(i)

||PTxi −PTxj ||

= 2PTX(Dw − Fw)XTP
(16)

where Dw is a diagonal matrix and its entries are column sum of Fw, i.e.
Dw
ii =

∑
j F

w
ij .

Then, we need to maximize the margin between inter-class scatter and
intra-class compactness, i.e.

T (P) = B(P)−W (P) (17)

Indeed, the margin T (P) measures the total differences among the distances
from xi to the inter-class neighbors and intra-class points in the projected
space.

To gain more insight, we rewrite T (P) in the form of trace by following
some simple algebraic steps:

T (P) = B(P)−W (P)
= 2tr{PTX(Db − Fb)XTP− 2PTX(Dw − Fw)XTP}
= 2tr{PTX(Db − Fb −Dw + Fw)XTP}
= 2tr{PTXQXTP}

= 2
d∑
i=1

PTi XQXTPi

(18)

Where Q = Db − Fb −Dw + Fw, with equation (18), it can be modified to{
max
P

tr{PTXQXTP}
s.t. PTP=I

(19)

Given the constraint PTP = I, the columns of P are orthogonal. The orthog-
onal projection matrix is better able to enhance the discriminant ability [10,
22,23].

In order to solve the formulation (19), we give the following theorems.

Theorem 1. If Db,Dw,Fb,Fw are all real symmetric matrices, then XQXT

is a real symmetric matrix.
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Proof. Since Db,Dw,Fb,Fw are real symmetric matrices, so (Db)T = Db,
(Dw)T = Dw, (Fb)T = Fb, (Fw)T = Fw, hence,

(XQXT )T = {X(Db − Fb −Dw + Fw)XT }T
= (XT )T (Db − Fb −Dw + Fw)TXT

= X(Db − Fb −Dw + Fw)XT

= XQXT

(20)

Thus, the matrix XQXT is a symmetric matrix.
This completes the proof. ut
Theorem 2. Since XQXT is a real symmetric matrix, the optimiza-

tion problem (19) is equivalent to the eigen-decomposition problem of ma-
trix XQXT . Assume that λ1 ≥ · · · ≥ λi ≥ · · ·λr ≥ 0 ≥ · · · ≥ λd are the
eigenvalues of XQXT , and P is the corresponding eigenvector of the eigen-
value λr. The optimal projection matrix P is only composed of eigenvectors
corresponding to the top r largest positive eigenvalues, or

P = [P1, · · · ,Pr] (21)

Proof. Since XQXT is a real symmetric matrix, assume that λi(1 ≤ i ≤
N). The eigenvalues of XQXT and Pi are the corresponding eigenvectors of
the eigenvalues λi. According to the properties of the matrix, we yield

XQXTPi = λiPi (22)

Thus,

PTi XQXTPi = PTi λiPi = Pi
TPiλi = λi (23)

Thus, the objective function (19) can be rewritten as

tr{PTXQXTP} =
d∑
i=1

PTi XQXTPi

=
d∑
i=1

PTi λiPi =
d∑
i=1

λi

(24)

Since matrix XQXT is non-positive definite, the eigenvalues of XQXT can
be positive, negative, or zero. In order to maximize tr{PXQXTP}, we should
choose all positive eigenvalues, or

∑r
i=1 λi. Thus, when tr{XQXT } achieves

its maximal value
∑r
i=1 λi, the optimal solution to (19) must be

P = [P1,P2, · · · ,Pr] (25)

This completes the proof. ut
From Theorem 1, we know that XQXT is a symmetric matrix, and switches

to a simple eigenvalue and eigenvector problem with respect to symmetric ma-
trix XQXT . From Theorem 2, we know that the optimal project matrix is only
composed of eigenvectors corresponding to the top r largest positive eigenval-
ues. Hence, the transformation matrix P is constituted by the r eigenvectors
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of XQXT corresponding to its first r positive eigenvalues. So the embedding
of new test sample xnew ∈ Rd is accomplished by ynew = PTxnew, where
ynew ∈ Rr(r � d).

The details of the Apps-DAG-DNE are given in Algorithm 1.

Algorithm 1 : Apps-DAG-DNE

Input: A training set {(xi, yi)}Ni=1, and the dimensionality of subspace r;
Output: Projection matrix P.

Step 1: Compute the inter-class matrix Fb by

F b
ij =

{
1, i ∈ ANb

K(j) or j ∈ ANb
K(i)

0, otherwise
and the intra-class Fw by

Fw
ij =

{
1, i ∈ ANw

K(j) or j ∈ ANw
K(i)

0, otherwise

Step 2: Reformulate the objective function, where XQXT = X(Db−Fb−Dw +Fw)XT ;

Step 3: Eigendecompose the matrix XQXT ;
Step 4: Choose the first r (assume it has r positive eigenvalues) largest positive eigen-
values corresponding to eigenvectors P = [P1, · · · ,Pr].

4 Performance Evaluation

4.1 Experiment setup

To evaluate the effectiveness of the proposed method, we have extensively
validated our Apps-DAG-DNE method on two widely used datasets, i.e., Yale
and Caltech-Leaves datasets, and the results are compared with NPE, DNE,
LDNE and DAG-DNE. All of these methods are adopted to find the low-
dimensional representations, which require the nearest neighbor parameter K
for constructing adjacency graphs. For simplicity, the nearest neighbor (NN)
classifier is used for classifying test images in the projected spaces.

All experiments are performed on the personal computer with a 2.30 GHz
Intel(R) Core (TM) i5-6200 CPU and 8 G bytes of memory. This computer
runs on windows 7, with Matlab 2013a compiler installed.

4.2 Datasets

In order to study the performance and generality of different methods, we
perform experiments on two image datasets:

1) The Caltech-Leaves dataset [24] consists of 186 images of 20 species
of Leaves against cluttered different backgrounds. Each image was resized to
32×32 pixels in the experiment. Fig. 2 shows some image samples in Caltech-
Leaves dataset.
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Fig. 2 Samples from the Caltech-Leaves dataset.

Fig. 3 Samples from the Yale face dataset.

2) The Yale face dataset [25] contains 165 images of 15 people. Each person
has 11 images. Each image was manually cropped and resized to 32×32 pixels.
Fig. 3 shows some image samples in Yale dataset.

4.3 Comparison methods

Here we further compare the proposed Apps-DAG-DNE method with the fol-
lowing methods.

1) NPE [5]. NPE is an unsupervised method, which finds an embedding to
preserve local information and can be extended to unseen samples.

2)DNE [8]. DNE is a supervised method, which keeps local structure by
constructing an adjacency graph, and could find optimal projection directions
by using spectrum analysis.

3)LDNE [9]. LDNE is also a supervised method, which optimizes the d-
ifference between the inter-class distance and the intra-class distance under
constructing the adjacency graph by endowing different weights.

4)DAG-DNE [10]. DAG-DNE is also a supervised method, which finds the
best projection matrix by constructing double adjacency graphs.

4.4 Performance metric

In the classification of high-dimensional data, many researchers (e.g., Xiaofei
He [26], Zhao Zhang [27]) have used the classification accuracy to verify the
performance of the methods. The performance of all methods is measured by
classification accuracy which is calculated by



12 Shangguang Wang, Chuntao Ding

Accuracy =
CTest

Test
(26)

where CTest denotes the number of correctly classified test samples, and Test
denotes the number of all test samples.

4.5 Experimental Results

4.5.1 Results of Caltech-Leaves Recognition

In the experiment, we investigated the effect of the number of neighbors K
and the ratio between the number of training and testing data to classification
performance. First, we set K = 3 and evaluated the effect of ratio between the
number of training and testing data that 60% and 90% of the training samples
were randomly selected, and the remaining samples were used to test. Second,
we chose 80% of samples as training samples and evaluated the effect of the
number of neighbors. Without prior knowledge, K was set to be 1, 3, 5 and
7. PCA was utilized to reduce dimensionality from 1024 to 100, which could
reduce the computational complexity and diminish the majority of noises. we
regulated the number of projection vectors from 1 to 80 at an interval of 6, and
the results were averaged over the 15 trials. Fig. 4 shows the accuracy of five
methods vs. dimensionality of subspace with different K, and Fig. 5 shows the
accuracy of five methods vs. dimensionality of subspace with different training
samples. From Figs. 4-5, we found that: 1) The performance of each method
improved rapidly, and then almost became stable. 2) The DNE, LDNE, DAG-
DNE and Apps-DAG-DNE performed better than NPE because NPE is an
unsupervised method. More importantly, Apps-DAG-DNE performed better
than DNE, LDNE and DAG-DNE across a wide range of dimensionality on
the Caltech-Leaves dataset. 3) When the training sample size is large enough
to sufficiently characterize the data distribution, such as the case for the 90%
training samples on Caltech-Leaves dataset, all methods we discussed in this
work can achieve good performance. Based on choosing appropriate points, our
Apps-DAG-DNE delivered higher accuracy than other techniques, primarily
due to advantages of choosing appropriate points to some extent.

Furthermore, Table 1 reports the best average classification accuracy on
test sets of all methods under different K, and in Table 2, we summarize the
statistics according to Fig. 5, including the mean accuracy, the best record, and
the optimal image subspace dimensions (i.e., Dim), where the optimal subspace
corresponded to the highest recognition accuracy for each method in each
setting. We made the following similar observations: 1) In spite of the variation
of K, Apps-DAG-DNE had the highest classification accuracy among these
methods. 2) Apps-DAG-DNE did not have the lowest number of dimensions of
the subspace when achieving the best performance, e.g., 90% training samples,
NPE: 28, DNE: 24, LDNE: 24, DAG-DNE: 24, Apps-DAG-DNE: 50. It is
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(b) K = 3
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(c) K = 5
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(d) K = 7

Fig. 4 Accuracy vs. dimension on the Caltech-Leaves dataset under different K.
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Fig. 5 Accuracy vs. dimension on the Caltech-Leaves dataset under different training sam-
ples.
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Table 1 Performance comparison of five methods on Caltech-Leaves dataset with different
numbers of points

Method K = 1 K = 3 K = 5 K = 7

NPE 63.78%± 2.42 63.78%± 3.69 65.41%± 2.92 58.38%± 2.39
DNE 66.49%± 2.81 68.11%± 2.58 65.41%± 1.62 62.16%± 1.29
LDNE 66.49%± 1.75 67.57%± 3.52 64.76%± 2.62 62.16%± 2.31
DAG-DNE 70.27%± 2.47 69.73%± 1.40 71.35%± 1.22 68.65%± 1.37
Apps-DAG-DNE 76.22%± 1.42 74.05%± 1.41 76.76%± 1.37 72.97%± 0.61

Table 2 Performance comparison of five methods on Caltech-Leaves dataset with different
numbers of training samples

Method/Result
Leaves (60% training samples) Leaves (90% training samples)

Mean Best Dim Mean Best Dim

NPE 0.5054 0.6261 23 0.6944 0.8889 24

DNE 0.5946 0.7432 6 0.6944 0.9444 24

LDNE 0.5986 0.7297 6 0.6944 0.9444 24

DAG-DNE 0.6838 0.8243 30 0.7278 0.9444 35

Apps-DAG-DNE 0.7162 0.8378 27 0.8278 1 50

worth noting that when the number of dimensions of the subspace of Apps-
DAG-DNE is 24, it yielded better performance than NPE, DNE, LDNE and
DAG-DNE.

4.5.2 Results of Yale recognition

In this simulation, we focused on the effect of the dimensionality of subspace
under different choices of nearest neighbor parameters K. Similar to the ex-
periment on Caltech-Leaves, we set the numbers of nearest neighbors to be
1, 3, 5 and 7. We randomly selected 70% training samples from each class,
where the remaining images were used for testing. For simplicity, PCA was
utilized to reduce the number of dimensions from 1,024 to 100. We repeated
15 trials and reported the average results. For each setting, the number of pro-
jection vectors were regulated from 1 to 80 at an interval of 6 for each fixed
K value. Fig. 6 shows the average accuracy values of the five methods versus
the dimensionality of the subspace with different values of K on Yale dataset.
From Fig. 6, we found that: 1) Apps-DAG-DNE performed better than NPE,
DNE, LDNE, DAG-DNE across a wide range of dimensionality on the Yale
dataset. 2) In spite of the variation of K, Apps-DAG-DNE had the highest
classification accuracy among these methods. The major reason for this might
have been that Apps-DAG-DNE chooses the appropriate points.

Furthermore, Table 3 reports the best average classification accuracy on
test sets of all five methods under different K. We can see that Apps-DAG-
DNE has the highest accuracy among these methods. By using Apps-DAG-
DNE to learn subspace, we can not only reduce the computational complexity
but also improve the classification performance.
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(a) K = 1
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(b) K = 3
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(c) K = 5
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(d) K = 7

Fig. 6 Accuracy vs. dimension on the Yale dataset under different K.

Table 3 Performance comparison of five methods on Yale dataset with different numbers
of points

Method K = 1 K = 3 K = 5 K = 7

NPE 46.22%± 2.49 52.00%± 3.45 48.89%± 3.34 51.56%± 2.87
DNE 70.22%± 2.30 71.11%± 2.49 71.56%± 3.13 67.56%± 3.19
LDNE 70.67%± 2.33 72.44%± 1.45 73.33%± 2.15 68.44%± 1.24
DAG-DNE 76.00%± 1.42 81.73%± 2.17 81.33%± 2.24 74.22%± 2.18
Apps-DAG-DNE 83.56%± 1.27 85.78%± 1.26 82.22%± 1.39 74.22%± 2.18

5 Conclusion

In this paper, we proposed an appropriate points choosing method based on
double adjacency graphs-based discriminant neighborhood embedding, called
Apps-DAG-DNE, which chooses different points with traditional way to con-
struct adjacency graphs. It chooses nearest neighbors to construct inter-class
adjacency graph, which can build a margin between samples if they belong
to the different classes, and chooses farthest points to construct intra-class
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graph, which can establish relationships between remote samples if and only
if they belong to the same class. Therefore, the low-dimensional representa-
tions produced by the proposed method are close, even if they are separable
in the original high-dimensional space. The experimental results show that
Apps-DAG-DNE can be very effective for data classification. As for future
research, we plan to introduce the knowledge of deep learning for discovering
more discriminative subspace.
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