
Cooperative Service Caching and Workload
Scheduling in Mobile Edge Computing

Xiao Ma∗, Ao Zhou∗, Shan Zhang†, Shangguang Wang∗
∗ State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications

†School of Computer Science and Engineering, Beihang University

Abstract—Mobile edge computing is beneficial for reducing
service response time and core network traffic by pushing
cloud functionalities to network edge. Equipped with storage
and computation capacities, edge nodes can cache services of
resource-intensive and delay-sensitive mobile applications and
process the corresponding computation tasks without outsourcing
to central clouds. However, the heterogeneity of edge resource
capacities and mismatch of edge storage and computation ca-
pacities make it difficult to fully utilize both the storage and
computation capacities in the absence of edge cooperation. To
address this issue, we consider cooperation among edge nodes and
investigate cooperative service caching and workload scheduling
in mobile edge computing. This problem can be formulated
as a mixed integer nonlinear programming problem, which
has non-polynomial computation complexity. Addressing this
problem faces challenges of subproblem coupling, computation-
communication tradeoff, and edge node heterogeneity. We devel-
op an iterative algorithm named ICE to solve this problem. It
is designed based on Gibbs sampling, which has provably near-
optimal performance, and the idea of water filling, which has
polynomial computation complexity. Simulation results demon-
strate that our algorithm can jointly reduce the service response
time and the outsourcing traffic, compared with the benchmark
algorithms.

Index Terms—edge service caching, workload scheduling, mo-
bile edge computing

I. INTRODUCTION

The proliferation of mobile devices and the advancemen-
t of Internet of things bring resource-intensive and delay-
sensitive mobile applications to the public, such as objective
recognition, augmented reality, and mobile gaming. Mobile
cloud computing proposes to offload these applications to
central clouds, which, however, suffers from unpredictable
wide area network delay, making it hard to guarantee the
quality of service for delay-sensitive applications [1]–[3].
Moreover, according to Cisco, the growth rate of mobile data
required to be processed will far exceed the capacity of central
clouds in 2021 [4]. As a result, the outsourcing data traffic and
computation load to central clouds become critical concerns
of network operators. Mobile edge computing has emerged as
a promising solution to addressing above concerns [5], [6]. A
typical form of mobile edge computing is to equip mobile base
stations with storage and computation capacities (forming edge
nodes). Through caching services (including program codes
and related databases) of mobile applications at edge nodes,
mobile edge computing is able to process the corresponding
computation tasks at network edge, benefiting from reduced
service response time and outsourcing traffic to central clouds.

Fig. 1: Cooperative service caching and workload scheduling
in mobile edge computing.

Compared with mobile cloud computing which has elas-
tic resource capacity, the main limitation of mobile edge
computing is the limited resource capacities of edge nodes.
When there is no cooperation among edge nodes, the edge
resource capacities are prone to be under-utilized for two
reasons. First, the heterogeneity of edge resource capacities
can cause resource under-utilization. For an edge node that
has insufficient storage capacity to cache a service or cannot
provide sufficient computation capacity for an application,
the corresponding computation tasks have to be outsourced
to central clouds rather than to nearby powerful edge nodes,
resulting in under-utilization of edge resources [7]. Moreover,
the mismatch of storage and computation capacities of edge
nodes further aggravates edge resource wasting. An edge node
with large computation capacity cannot process substantial
computation tasks when it has insufficient storage capacity
to cache the services, leading to under-utilization of edge
computation capacities. To fully utilize both the storage and
computation capacities of edge nodes, it is crucial to explore
the potential of cooperation among edge nodes .

In this paper, we consider cooperation among edge nodes
and investigate cooperative service caching and workload
scheduling in mobile edge computing. As shown in Fig. 1,
neighbouring edge nodes are connected by local area network
(LAN) or wired peer-to-peer links [8]. For an edge node that
is not caching a service or does not provide sufficient com-

2076



putation capacity, the corresponding computation tasks can be
offloaded to nearby under-utilized edge nodes that have cached
the service or outsourced to the cloud. Through exploiting
the cooperation among edge nodes, the heterogeneous edge
resource capacities can be fully utilized and the resource
capacity mismatch of individual edge nodes can be alleviated.
The existing work which considers edge cooperation and
jointly optimizes service caching and workload scheduling has
sought to maximize the overall requests served at edge nodes
while ensuring the service caching cost within the budget [9],
[10]. However, it is hard to determine the exact value of the
budget in practical scenarios. Furthermore, while the reduced
delay is the main advantage of mobile edge computing, the
service response time is not considered as a performance
criteria in the existing work. In this paper, we investigate
the cooperative service caching and workload scheduling with
the objective of minimizing the service response time and the
outsourcing traffic (denoted as problem 1).

Solving this problem is challenging. First, service caching
and workload scheduling are two coupled subproblems. The
service caching policies determine the decision space of work-
load scheduling, and in return, the workload scheduling results
reflect the performance of the service caching policies. Solving
problem 1 should take into consideration the interplay between
the two subproblems. Second, minimizing the service response
time requires to properly trade off the computation and the
transmission delay. While offloading computation tasks from
overloaded edge nodes to nearby under-utilized edge nodes is
beneficial for reducing the computation delay, task offloading
causes additional transmission delay on LAN. Solving problem
1 needs to balance the tradeoff between computation and
communication. Third, edge nodes are heterogeneous in both
storage and computation capacities. Solving problem 1 needs
to balance workloads among these heterogeneous edge nodes,
causing high computation complexity. How to deal with edge
heterogeneity and design algorithms with reduced computation
complexity is challenging.

To deal with the challenge of subproblem coupling, we for-
mulate problem 1 as a mixed integer nonlinear programming
problem to jointly optimize service caching and workload
scheduling. A two-layer Iterative Caching updatE (ICE) algo-
rithm is designed to direct the interplay of the two subprob-
lems, with the outer layer updating the edge caching policies
iteratively based on Gibbs sampling (the service caching sub-
problem) and the inner layer optimizing the workload schedul-
ing polices (the workload scheduling subproblem). To properly
trade off the computation and communication delay, we use
queuing models to analyze the delay in each part of the system
and thereby compute the average service response time. A
proper computation-communication tradeoff can be achieved
when the average service response time is minimized. To deal
with high computation complexity of workload scheduling
caused by edge heterogeneity, we exploit the convexity of
the workload scheduling subproblem and propose a heuristic
workload scheduling algorithm with polynomial computation
complexity based on the idea of water filling.

The contributions of this paper are summarized as follows:
• We investigate cooperative service caching and workload

scheduling in mobile edge computing, aiming at minimiz-
ing both the service response time and outsourcing traffic
to central clouds. We formulate this problem as a mixed
integer non-linear programming problem and show its
non-polynomial complexity by analyzing the simplified
cases of this problem.

• We use queuing models to analyze the delay in each
part of the system, based on which the convexity of the
workload scheduling subproblem is proved.

• We design the two-layer ICE algorithm to solve problem
1. In the outer layer, the proposed ICE algorithm updates
the service caching policies iteratively based on Gibbs
sampling. In the inner layer, we exploit the convexity of
the workload scheduling subproblem and further propose
a heuristic workload scheduling algorithm with reduced
complexity based on the idea of water-filling.

The reminder of this paper is organized as follows. Section
II reviews the related work. Section III analyzes the system
model and provides problem formulation. In Section IV, algo-
rithm design is presented in detail, and Section V illustrates
simulation results. Finally, the concluding remarks are given
in Section VI.

II. RELATED WORK

Mobile edge computing has been envisioned as a promising
computing paradigm with the benefits of reduced delay and
outsourcing traffic to central clouds. Due to the limited storage
and computation capacities of edge nodes, properly placing
services of mobile applications and scheduling computation
tasks among edge nodes are crucial to optimize the quality of
services with high resource efficiency. There has been exten-
sive work devoted to workload scheduling, service caching,
and joint service caching and workload scheduling.

Although mobile edge computing enables mobile users to
access powerful resources within one-hop range [11], [12],
a lot of prior work has evolved to allow task offloading to
edge nodes (or the remote cloud) within more than one hop
and solve the workload scheduling problem. Online workload
scheduling among edge-clouds has been studied in [13], [14]
to accommodate dynamic requests in mobile edge computing.
In [15], Tong et al. have developed a hierarchical architecture
of edge cloud servers and optimized workload placement in
this architecture. Cui et al. have proposed the software defined
control over request scheduling among the cooperative mobile
cloudlets [16]. All the above work on workload scheduling
has a common assumption that each edge node (also named
as edge-cloud or cloudlet) has cached all the services and can
process any type of computation tasks, which is impractical
due to the limited storage capacities of edge nodes. Service
caching among edge nodes should also be taken into consid-
eration.

Caching services at edge nodes is an effective approach to
relieving the burden of backhual network and central clouds.
Increasing efforts have been devoted to edge service caching.

2077



Borst et al. [17] have presented popularity-based distributed
caching algorithms for content distribution network (CDN).
Zhang et al. [18] have proposed a user-centric edge caching
mechanism in which each user is served by multiple edge
servers cooperatively to optimize service delay. Yang et al.
[19] have designed location-aware edge caching schemes to
maximize local hit rates by predicting popularity of contents.
Dynamic edge service caching has been extensively studied
in [20]–[23]. Dán et al. in [20] have investigated prediction-
based content placement and provided approximations of
dynamic content allocation for the hybrid system of cloud-
based storage and CDN. History-based dynamic edge caching
have been proposed in [21] without predicting future requests
or adopting stochastic models. In mobile edge computing,
both storage and computation capacities of edge nodes are
limited. To guarantee quality of service for applications that
are resource-intensive and delay-sensitive (e.g., augmented
reality applications), service caching and workload scheduling
should be jointly optimized to minimize service response time
with high resource utilization.

Joint optimization of edge caching and request routing has
been studied in [24], [25]. The work [24] has been oriented to
data-intensive applications (such as video streaming), which,
however, cannot be directly applied to applications that are
both data-intensive and computation-intensive (such as aug-
mented reality applications). The work [25] has studied the
issue in multi-cell environment, which is only applied to users
covered by multiple base stations concurrently. To address
the above issue, joint optimization of service caching and
workload scheduling has been investigated in [7], [9], [10].
The work [7] has jointly optimized service caching and task
offloading without considering cooperation among edge nodes,
which can lead to under-utilization of heterogeneous edge
resource capacities. The work [9] and [10] have investigated
joint service caching and request scheduling without taking
the service response time (including the transmission delay
and the computation delay) as the performance criteria, which
cannot highlight the benefit of reduced delay in mobile edge
computing. Different from the existing work, we study cooper-
ative service caching and workload scheduling in mobile edge
computing, aiming at minimizing the service response time
and the outsourcing traffic to central clouds. We solve this
problem by developing the iterative caching update algorithm
based on Gibbs sampling and further proposing the heuristic
workload scheduling algorithm with polynomial complexity
based on the idea of water filling.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this paper, we investigate cooperative service caching and
workload scheduling in mobile edge computing. As shown in
Fig. 1, neighbouring edge nodes are connected by LAN or
wired peer-to-peer links. For an edge node that is not caching
a service or does not provide sufficient computation capacity,
the corresponding computation tasks can be offloaded to the
neighbouring under-utilized edge nodes that have cached the

service or outsourced to the cloud. We consider a multi-edge
system consisting of a set of N = {1, 2, ..., N} edge nodes,
each of which is equipped with the computation capacity Rn
(n ∈ N) and storage capacity Pn (n ∈ N). The system
provides a library of S = {1, 2, ...S} services, such as mobile
gaming, object recognition, video streaming, etc, which are
differentiated by the computation and storage requirements.
To process one type of mobile application at network edge, an
edge node should provision certain storage capacity to cache
the service of the application. Let ps be the required storage
capacity to cache service s. For each service s, we consider
that the computation requests of the corresponding computa-
tion task (in CPU cycles) follow exponential distribution with
the expectation of βs, and the task arrival at each edge node
n is a Poisson process with the expected rate Ans, which is a
general assumption [7]. There is a centralized cloud with much
larger storage and computation capacity than each edge node.
The cloud stores all the services and the processing delay in
the cloud dcloud is mainly caused by the transmission delay
from edge nodes to the cloud.

1) Edge Caching and Workload Scheduling Policies: We
answer two questions in this study: 1) which edge nodes cache
each type of service? and 2) how to schedule the computation
workloads among the neighbouring edge nodes that have
cached the same services? We use two sets of variables to
model the edge caching and workload scheduling results: cns
indicates whether service s is cached at edge node n, and λns
represents the workload ratio of service s that is executed
at edge node n. We refer by edge caching and workload
scheduling policies to the respective matrices:

C = (cns ∈ {0, 1} : n ∈ N, s ∈ S),
Λ = (λns ∈ [0, 1] : n ∈ N ∪ {o}, s ∈ S).

(1)

Here, λos denotes the workload ratio of service s outsourced
to the cloud. Denote by cn = (cns : s ∈ S) the caching
decision of edge node n, and Cn the feasible region of cn,
i.e., cn ∈ Cn. The services cached at each edge node n cannot
exceed the storage capacity, i.e.,∑

s∈S
cnsps ≤ Pn. (2)

For each service s, the workload ratio λns (n ∈ N ∪ {o})
satisfies the normalization condition as∑

n∈N∪{o}

λns = 1. (3)

2) Service Response Time: Denote by Θn the set of neigh-
bouring edge nodes that have direct connection with edge node
n, and dn the transmission delay on LAN to edge node n. The
computation workload executed at edge node n should be less
than or equal to the overall arriving tasks of neighbouring edge
nodes,

λnsAs ≤
∑

i∈Θn∪{n}

Ais, (4)

where As is the overall computation workload of service s
in the system, i.e. As =

∑
n∈N

Ans. We can notice that if

2078



λnsAs ≤ Ans, all the tasks are from edge node n; Otherwise,
the excessive tasks (λnsAs−Ans) are from nearby edge nodes.

At each edge node, the computation capacity is shared
by the cached services. Let the function Γn represent the
computation allocation mechanism at edge node n, i.e., the
computation capacity allocated to service s is rns = Γn(C).
For each service s, as the computation requests of the cor-
responding computation task follow exponential distribution,
the serving time at edge node n also follows exponential
distribution with the expectation βs

rns
. Moreover, the task

arrival of service s at edge node n is a Poisson process with
the expectation λnsAs. Thus for each service s, the serving
process of computation tasks at edge node n can be modeled
as an M/M/1 queue, and the computation delay is

Dns =
1

µns − λnsAs
, (5)

where µns = rns

βs
. To ensure the stability of the queue, we

have
λnsAs < µns. (6)

By combining Eq. (4) and Eq. (6), λns is constrained as

λnsAs ≤ min{
∑

i∈Θn∪{n}

Ais, µns − ε}. (7)

Here, ε (ε > 0) is introduced to merge Eq. (6) into Eq. (7).
Outsourcing tasks to the cloud suffers from long transmis-

sion delay in the core network. As the computation capacity
of the cloud is much larger than each edge node, we consider
that the computation delay in the cloud is negligible. Thus,
the processing delay in the cloud is mainly caused by the
transmission delay in the core network. The arrival process
of computation tasks in the core network can be modeled as
a Poisson process with expected rate λosAs (which is a sum
of multiple independent Poisson processes from edge nodes).
Let ts be the amount of transmission requests (e.g., input
data) when outsourcing one unit of computation requests for
service s (in CPU cycle). Here, ts is a constant related to the
specific service s [8], [16]. Then for the service s, the trans-
mission requests of a corresponding task follow exponential
distribution with expectation tsβs. The transmitting time of a
task in the core network also follows exponential distribution
with expectation tsβs

Bs
, where Bs represents the core network

bandwidth for transmitting service s. Hence, the transmitting
delay in the core network is given as

dcloud =
1

Bs

tsβs
− λosAs

, (8)

where λosAs < Bs

tsβs
.

The average response time of service s can be computed as
a weighted sum of delay at each part of the system, including
the computation delay at edge nodes, the transmission delay
within LAN and the transmission delay to the cloud, i.e.,

Ds =
∑
n∈N

[
λnsDns +

max{λnsAs −Ans, 0}
As

dn

]
+λosdcloud.

(9)

Here, max{λnsAs−Ans,0}
As

represents the ratio of the workload
offloaded to edge node n from neighbouring edge nodes, and
dn is the transmission delay within LAN to edge node n.

B. Problem Formulation

This paper jointly optimizes the edge service caching and
workload scheduling policies, aiming at minimizing service
response time and overall outsourcing traffic to the cloud:

P1 : min
C,Λ

∑
s∈S

(Ds + wsλosAs)

s.t.
∑

n∈N∪{o}

λns = 1, ∀s ∈ S

C1 :
∑
s∈S

cnsps ≤ Pn, ∀n ∈ N

C2 : λnsAs ≤ min{
∑

i∈Θn∪{n}

Ais, µns − ε},

∀n ∈ N,∀s ∈ S

C3 : λosAs ≤
Bs

tsβs
− ε, ∀s ∈ S

C4 : λns ≥ 0, ∀n ∈ N ∪ {o}, ∀s ∈ S
C5 : cns ∈ {0, 1}. ∀n ∈ N,∀s ∈ S

(10)
Here ws is a weight constant which is positively related to the
transmitted data traffic when outsourcing tasks of service s.
Constraint C1 ensures the cached services at each edge node
do not exceed the storage capacity. C2 is the combined result
of Eq. (4) and Eq. (6), ensuring that each edge node only
admits computation requests from nearby edge nodes, and the
computation workload scheduled to each edge node does not
exceed the computation capacity for each service.

C. Complexity Analysis

Problem P1 is a mixed integer nonlinear programming
problem. In this section, we present the non-polynomial com-
putation complexity of P1 by analyzing two simplified cases,
i.e., non-cooperation among edge nodes, and considering a
single type of service.

1) Simplified Case 1: Non-cooperation among Edge Nodes:
In this case, we assume that there is no cooperation among
edge nodes. The computation tasks of different services are
either processed locally or directly outsourced to the cloud.
Thus, the computation tasks outsourced to the cloud are not
only decided by the edge computation capacity, but also
highly dependent on the storage capacity of each individual
edge node. In this scenario, problem P1 is reduced to the
service caching and task oursourcing problem similar to [7].
Specifically, workload scheduling among edge nodes in P1 is
reduced to N independent task outsourcing subproblems. Each
edge node only needs to decide the oursourced computation
requests λons (which is given as λons = 1−λns) according to
its own service caching policy and the computation capacity
limitation. It is indicated in [7] that the reduced service caching
and task outsourcing problem remains challenging since it is

2079



a mixed integer nonlinear programming problem and has non-
polynomial computation complexity.

2) Simplified Case 2: Considering a Single Type of Service:
In this case, we assume that only a single type of service is
considered in the system. With this assumption, the caching
result at each edge node can be directly determined by the
relationship between the service storage requirement and the
edge storage capacity: The service will be cached at one edge
node if it has sufficient storage capacity; Otherwise, the service
will not be cached. Thus, problem P1 is reduced to a workload
scheduling problem, which schedules computation workloads
among the edge nodes that have cached the service.

Solving the workload scheduling problem is challenging
in two folds. First, edge nodes are heterogeneous in both
computation task arrivals and edge computation capacities.
Balancing the workloads among the heterogeneous edge nodes
is critical to minimizing the service response time and the
outsourcing traffic to central clouds, which, however, can cause
high computation complexity when achieved in a centralized
manner. Second, scheduling workloads among edge nodes
should consider the computation-communication tradeoff. Of-
floading computation tasks from overloaded edge nodes to
nearby light-loaded edge nodes or to the cloud is beneficial
for reducing the computation delay, but meanwhile causes
additional transmission delay. Minimizing service response
time requires proper balance between the computation and
communication delay.

By summarizing the above two simplified cases of problem
P1, both the reduced service caching and task outsourcing
and workload scheduling problems have non-polynomial com-
putation complexity. Therefore, problem P1 also has non-
polynomial computation complexity.

IV. ALGORITHM DESIGN

As clarified in the above section, even the simplified cases of
problem P1 remain to be intractable at polynomial complexity.
This section presents the main idea of algorithm design which
jointly optimizes service caching and workload scheduling
policies with reduced computation complexity. Specifically, we
design a two-layer Iterative Caching updatE algorithm (ICE).
The outer layer updates the edge caching policy based on
Gibbs sampling (Algorithm 1) [26]. In the inner layer, the
edge caching policy is given and problem P1 is reduced to the
workload scheduling subproblem among the edge nodes that
have cached a certain type of service (similar to Simplified
case 2). We demonstrate exponential complexity of the work-
load scheduling subproblem by convexity analysis and further
propose a heuristic workload scheduling algorithm (Algorithm
2) with reduced computation complexity based on the idea of
water filling.

A. Caching Update based on Gibbs Sampling

In the outer layer of ICE, the edge caching policy is updated
based on Gibbs sampling. Gibbs sampling is a Monte Carlo
Markov Chain technique, which can deduce the joint distri-
bution of several variables from the conditional distribution

samples. The main idea of Gibbs sampling is to simulate the
conditional samples by sweeping through each variable while
maintaining the rest variables unchanged in each iteration [26].
The Monte Carlo Markov Chain theory guarantees that the
stationary distribution deduced from Gibbs sampling is the
target joint distribution [27]. In this work, we exploit the idea
of Gibbs sampling to determine the optimal service caching
policies iteratively, as shown in Algorithm 1. The key point
of this algorithm is to associate the conditional probability
distribution of edge caching policies with the objective of P1
(Step 7). Through properly designing the conditional probabil-
ity in each iteration, the deduced stationary joint distribution
can converge to the optimal edge caching policies with high
probability.

Algorithm 1 works as follows. In each iteration, randomly
select an edge node n (n ∈ N) and a feasible edge caching
decision c∗n while maintaining the caching decisions of the
rest edge nodes unchanged (Step 3). With the given caching
policies of all the edge nodes, P1 is reduced to the workload
scheduling subproblem:

P2 : min
Λ

∑
s∈S

(Ds + wsλosAs)

s.t.
∑

n∈N∪{o}

λns = 1, ∀s ∈ S

λnsAs ≤ min{
∑

i∈Θn∪{n}

Ais, µns − ε},∀n ∈ N,∀s ∈ S

λosAs ≤
Bs
tsβs

− ε, ∀s ∈ S

λns ≥ 0. ∀n ∈ N ∪ {o}, ∀s ∈ S
(11)

After solving P2 optimally, we can obtain the optimal objec-
tive value y (defined as y = min

Λ

∑
s∈S

(Ds + wsλos)). Assume

that when the selected edge node n changes its caching
decision from cn to c∗n, the optimal objective value varies
from y to y∗. Then, we associate the conditional probability
distribution of edge caching policies with the objective value
as: the selected edge node n changes its caching decision
from cn to c∗n with probability ρ = 1

1+e(y∗−y)/ω (ω > 0)
and maintains the current caching decision cn with probability
1− ρ (Step 7). Finally, the iteration ends if the stop criterion
is satisfied.

The following theorem demonstrates the convergence prop-
erty of Algorithm 1.

Theorem 1. Algorithm 1 can converge to the globally optimal
solution of problem P1 with an increasing probability as ω
decreases. When ω → 0, the algorithm converges to the
globally optimal solution with probability 1.

Proof. Please refer to Appendix A.

Remark: Theorem 1 indicates that in each iteration of the
Gibbs sampling technique, through proper selection of ω in
ρ = 1

1+e(y∗−y)/ω (ω > 0) which associates the service caching
update process with the objective value, the proposed ICE

2080



Algorithm 1 Caching Update Based on Gibbs Sampling

Input:
Ans (n ∈ N, s ∈ S), ps, βs (s ∈ S))

Output:
The edge caching policy C and the workload scheduling
policy Λ.

1: Initialize C0 ← 0.
2: for iteration i = 1, 2, ... do
3: Randomly select an edge node n ∈ N and an edge

caching decision c∗n ∈ Cn.
4: if c∗n is feasible then
5: Based on the edge caching policy

(ci−1
1 , .., ci−1

n , .., ci−1
N ), compute the optimal

workload scheduling policy Λ and the corresponding
y by solving P2.

6: Based on the edge caching policy
(ci−1

1 , ..., c∗n, ..., c
i−1
N ), compute the optimal

workload scheduling policy Λ∗ and the
corresponding y∗ by solving P2.

7: Let cin = c∗n with the probability ρ = 1
1+e(y∗−y)/ω ,

and cin = ci−1
n with the probability 1− ρ.

8: end if
9: if the stopping criterion is satisfied then

10: End the iteration and return Ci, λi.
11: end if
12: end for

algorithm can converge to the optimal edge caching policy
with high probability.

B. Heuristic Workload Scheduling Algorithm

In the inner layer of ICE, the edge caching policy is
given and problem P1 is reduced to the workload scheduling
subproblem (problem P2) among the edge nodes that have
cached a certain type of service. Problem P2 should be
solved to obtain the optimal workload scheduling policy and
the corresponding objective value. We first demonstrate the
exponential complexity of problem P2 through theoretical
analysis and further propose a heuristic workload scheduling
algorithm by exploiting the convexity of the problem.

1) Computation Complexity of P2: Substitute Eq. (5) and
(9) into P2, and the objective function f(Λ) can be rewritten
as

f(Λ) =
∑
s∈S

(Ds + wsλosAs)

=
∑
s∈S

∑
n∈N

(
λns

µns − λnsAs
+

max{λnsAs −Ans, 0}
As

dn)

+
∑
s∈S

(
λos

Bs

tsβs
− λosAs

+ wsλosAs).

(12)

Theorem 2. Problem P2 is a convex optimization problem
over the workload scheduling policy Λ.

Proof. Please refer to Appendix B.

A convex optimization problem can be solved using Karush-
Kuhn-Tucker (KKT) conditions [28]. We first present the
KKT conditions of P2. When the caching policy is given, the
computation resources allocated to each service are determined
according to Γn(C). Thus for one service, the workload
scheduling policy among edge nodes that have cached the
service is independent of the other services. Solving problem
P2 is equivalent to optimizing the workload scheduling policy
for each type of service. For service s, define the Lagrange
function as

Ls(λs,αs,ηs)

=(Ds + wsλos) +
∑

n∈N∪{o}

αns(λnsAs − πns)

−
∑

n∈N∪{o}

α(N+1+n)sλns + ηs(
∑

n∈N∪{o}

λns − 1),

(13)

where αs and ηs are Lagrange multipliers, and πns is the
upper bound of the inequation constraints defined as πns =
min{

∑
i∈Θn∪{n}

Ais, µns − ε} (n ∈ N) and πos = Bs

tsβs
− ε.

The KKT conditions of service s are given as

(C1)
∂Ls(λs,αs,ηs)

∂λns
= 0, ∀n ∈ N ∪ {o}

(C2) 0 ≤ λnsAs ≤ πns, ∀n ∈ N ∪ {o}

(C3)
∑

n∈N∪{o}

λns = 1,

(C4) αns(λnsAs − πns) = 0, ∀n ∈ N ∪ {o}
(C5) α(N+1+n)sλns = 0, ∀n ∈ N ∪ {o}
(C6) αns ≥ 0. ∀n ∈ {1, 2..., 2N + 2}

(14)

Here, (C4), (C5) and (C6) arise from the inequation con-
straints of P2. For each inequation constraint, there are two
possible results in Eq. (14): 1) αns = 0, λnsAs < πns
(or λns > 0), indicating that the optimal results are at the
extreme points derived from (C1); 2) αns > 0,λnsAs = πns
(or λns = 0), indicating the optimal results are at the boundary.
As there are 2(N + 1) inequation constraints in problem P2
(i.e., the computation capacity constraints of edge nodes),
directly searching for the results satisfying the KKT conditions
can cause O(22(N+1)) computation complexity. To solve P2
with reduced complexity, we propose the heuristic workload
scheduling algorithm (Algorithm 2).

2) Algorithm Design: The main idea of the algorithm is
to first remove the computation capacity constraints of edge
nodes and the transmission bandwidth constraint of the core
network (i.e., the inequation constraints in P2) to derive the
correlation of workload scheduling results of edge nodes and
the cloud. Then we search for the optimal results satisfying
the KKT conditions within the resource constraints.

When removing the inequation constraints, the KKT condi-
tions only keep (C1) and (C3), with (C1) changed to

∂Ls(λs,ηs)

∂λns
=

∂(Ds + wsλos + ηs(
∑

n∈N∪{o}
λns − 1))

∂λns
= 0,

(15)

2081



Fig. 2: Water-filling based workload scheduling.

for all n ∈ N ∪ {o}. However, Ls(λs,ηs) is not partially
derivable over λns when λns = Ans

As
(n ∈ N), which is

caused by max{λnsAs−Ans,0}
As

in (9). We solve this problem
by dividing it into two cases: λns < Ans

As
and λns ≥ Ans

As
, and

λns(ηs) (n ∈ N) can be derived as

λ ns =



1

As
(µns −

√
− µns
ηs + dn

), if ηs ≤ −θns − dn

1

As
(µns −

√
−µns
ηs

), if ηs ≥ −θns

Ans
As

, otherwise

(16)
where θns = µns

(µns−Ans)2
, and λos is given as

λos =
1

As
(
Bs
tsβs

−

√
− Bs
tsβs(ws + ηs)

). (17)

After removing the inequation constraints, the workload
scheduling policy Λ is given as the functions of ηs (Eq. (16),
(17)) to satisfy (C1) in the KKT conditions. To obtain the
optimal solution of ηs which satisfies the equation constraint
and the inequation constraints in P2, we search for the
workload scheduled to n (n ∈ N ∪ {o}) based on the idea of
water filling. As shown in Fig. 2, scheduling workloads to edge
nodes (or the cloud) is similar to filling water to tubes. When
the water level is above the upper bound or beneath the lower
bound of the tube, the water cannot be increased or decreased
anymore. By combining Eq. (16), (17) with (C2), we have
the following conclusion: Let y(ηs) =

∑
n∈N∪{o}

λns(ηs) − 1,

then y(ηs) is constant or monotone decreasing with ηs. Thus,
we can search the optimal ηs by the bisection method with
the details summarized in Algorithm 2. In Algorithm 2, λns
(n ∈ N ∪ {o}) is traversed to compute y(ηs) (step 2-13).
From step 16 to 23, the optimal ηs is computed in an iterative
manner, with overall O(log(

ηrs−η
l
s

ξ )) iterations. Therefore, the

computation complexity of Algorithm 2 is O(N log(
ηrs−η

l
s

ξ )),
which is linearly increasing with N .

V. SIMULATION RESULTS

In this section, extensive simulations are conducted to
evaluate our algorithm. We simulate a 100m × 100m area
covered with 12 edge nodes which provides a total of 8
services. The edge nodes are empowered by heterogeneous

Algorithm 2 Heuristic Workload Scheduling Algorithm

1: Define y(ηs) as follows.
2: for each n ∈ N ∪ {o} do
3: Compute λns(ηs) according to Eq. (16) and Eq. (17).
4: if λns(ηs) < 0 then
5: λns = 0.
6: else
7: if λns(ηs) > πns

As
then

8: λns = πns

As
.

9: else
10: λns = λns(ηs).
11: end if
12: end if
13: end for
14: y(ηs) =

∑
n∈N∪{o}

λns − 1.

15: Find ηl
s < ηr

s < 0 satisfying y(ηl
s) > 0, ηr

s < 0.
16: while ηr

s − ηl
s ≥ ξ do

17: ηm
s =

ηls+ηrs
2 .

18: if y(ηl
s) · y(ηm

s ) < 0 then
19: ηr

s = ηm
s .

20: else
21: ηl

s = ηm
s .

22: end if
23: end while
24: The optimal result of ηs is η∗s =

ηls+ηrs
2 .

25: Repeat step 2-13 to compute the optimal workload
scheduling policy Λ∗.

TABLE I: Simulation Parameters

Parameter Value
Service storage requirement, ps [20, 80] GB
Service computation requirement, βs [0.1, 0.5] Giga CPU cycles/task
Edge node storage capacity, Pn [100, 200] GB
Edge node computation capacity, Rn [50, 100] Giga CPU cycles
Data transmission ratio of service, ts [0.1,1.0] Mb/GHz
Core network bandwidth for service, Bs 160 Mbps
Skewness parameter, υ 0.5
Smooth parameter, ω 10−6

storage and computation capacities, both of which follow
uniform distribution. The total arrival rates of computation
tasks at different edge nodes An (n ∈ N) are uniformly
distributed. At each edge node, the popularity of services
follow Zipf’s distribution, i.e., χns ∝ r−υs , where rs is the
rank of service s and υ is the skewness parameter [10]. Thus,
the arrival rate of computation tasks of service s at edge node
n can be computed as Ans = χns ·An, where An is the total
arrival rate of computation tasks at edge node n. The main
simulation parameters are listed in Table I.

We compare ICE with two benchmark algorithms.
Non-cooperation algorithm [8]: Edge nodes cache services
according to Gibbs Sampling. At each edge node, the compu-
tation workloads of a service are either processed locally or
outsourced to the cloud.

2082



(a) Objective value y

(b) Average response time (c) Average outsourcing traffic

Fig. 3: Performance comparison of different algorithms: the
smooth parameter ω = 10−6 and the weight factor ws =
6 · 10−4.

Greedy algorithm: Edge nodes cache services according to
popularity. Popular services have high priority to be cached.
For the cached services, each edge node optimizes the work-
loads processed locally and outsourced to the cloud to mini-
mize service response time and outsourcing traffic.

A. Performance Comparison

We compare the three algorithms in terms of the objective
value (weighted sum of service response time and outsourc-
ing traffic), service response time and outsourcing traffic by
varying the average arrival rate of tasks at edge nodes (i.e.,
average An), and the results are shown in Fig. 3.

Compared with the Non-cooperation algorithm and the
Greedy algorithm, our ICE algorithm always yields the min-
imum object value and outsourcing traffic, and close to min-
imum total service response time. In the Greedy algorithm,
all the edge nodes cache the popular services with high
priority, thus the computation tasks of less popular services
have to be outsourced to the cloud. Moreover, the Greedy
algorithm only relies on service popularity to determine the
edge caching policy without considering storage requirements
of services. Caching multiple less popular services with low
storage requirements at edge nodes can be more beneficial for
fully utilizing both the computation and the storage capacities
compared with caching one popular service with large storage
requirement. The ICE and Non-cooperation algorithms cache
services based on Gibbs sampling, taking both the storage
requirements of services and service popularity into consid-
eration. Therefore, the Greedy algorithm generally induces
more outsourcing traffic and service response time than the
other two algorithms. The Non-cooperation algorithm cannot
fully utilize the computation capacities of edge nodes which

Fig. 4: Impact of ω on the convergence of ICE: the weight
factor ws = 6 · 10−4.

have low storage capacities due to the absence of cooperation
among edge nodes. In the ICE algorithm, both the storage and
computation capacities of edge nodes can be coordinated and
fully utilized through careful design of service caching and
workload scheduling among the connected edge nodes.

B. Convergence of ICE

According to the theoretical analysis in Theorem 1, the
Gibbs sampling based service caching algorithm (Algorithm
1) can converge to the optimal service caching results with
probability 1 when the smooth parameter ω is close to 0.
This part illustrates the influence of ω on the convergence of
ICE with the results shown in Fig. 4. The objective value can
converge to the near-optimal results when ω ≤ 10−4, and the
converging rate is faster as ω decreases. When ω ≥ 10−3, the
objective value converges slowly to higher value (ω = 10−3)
or even cannot converge (ω = 10−2). These results can be
explained by Step 7 of ICE and Eq.(22). According to ICE,
the smaller is ω, the more probable that the selected edge
node updates to the better caching decision in each iteration.
Thus, when ω is small, the objective value converges quickly
(within less iterations). In addition, it can be concluded from
Eq.(22) that stationary probability of the optimal caching result
increases with ω, and the probability → 1 when ω → 0.
Therefore, the smaller is ω, the more probable that ICE
converges to the optimal caching result.

C. The Impact of Edge Node Connectivity

This part analyzes the impact of edge node connectivity
on the performance of ICE. As shown in Fig. 5, the system
with all the edge nodes connected converges to the minimum
objective value while the system with no edge nodes connected
has the highest objective value. In the system with all the
edge nodes connected, the benefits of cooperation can be
achieved at system level through scheduling workloads among
all the edge nodes. When edge nodes are partially connected,
the cooperation benefits can only be explored within clusters
(the edge nodes within a cluster are connected and different
clusters are not connected with each other). Therefore, the
higher extent that edge nodes are connected with each other,
the more cooperation benefits can be achieved by ICE.

2083



Fig. 5: Impact of edge node connectivity: the smooth factor
ω = 10−6 and the weight factor ws = 3 · 10−3.

VI. CONCLUSIONS

In this paper, we have investigated cooperative service
caching and workload scheduling in mobile edge computing.
Based on queuing analysis, we have formulated this problem
as a mixed integer nonlinear programming problem, which
is proved to have non-polynomial computation complexity. To
deal with the challenges of subproblem coupling, computation-
communication tradeoff and edge node heterogeneity, we have
proposed the two-layer ICE algorithm, with the outer layer
updating the service caching policy iteratively based on Gibbs
sampling and the inner layer scheduling workloads based on
the idea of water filling. Extensive simulations have been
conducted to evaluate the effectiveness and convergence of the
proposed ICE algorithm, and the impact of edge connectivity
has been further analyzed.

APPENDIX A
PROOF OF THEOREM 1

Let A = {a1,a1, ...,aM} be the caching decision space
of edge nodes, and in each iteration, a random edge node n
randomly chooses a caching decision from A. With Algorithm
1 iterating over the edge nodes and the caching decision space,
the edge caching policy C evolves as a N -dimension Markov
chain, in which each dimension represents the caching decision
of each edge node. For the convenience of presentation, we
analyze the scenario with 2 edge nodes, and the 2-dimension
Markov chain is denoted as 〈c1, c2〉. In each iteration, one
randomly selected edge node n (n ∈ N) virtually changes its
current caching decision to a random caching decision from
cn, thus there is

Pr(〈c∗1, c2〉 | 〈c1, c2〉) = e−
y(〈c∗1 ,c2〉)

ω

NM(e−
y(〈c∗1 ,c2〉)

ω +e−
y(〈c1,c2〉)

ω )

Pr(〈c1, c∗2〉 | 〈c1, c2〉) = e−
y(〈c1,c∗2〉)

ω

NM(e−
y(〈c1,c∗2〉)

ω +e−
y(〈c1,c2〉)

ω )

,

(18)
where y(〈c1, c2〉) is the objective value when the caching
policy is 〈c1, c2〉. In this scenario, N = 2. Denote by
π(〈c1, c2〉) the stationary probability distribution of caching

policy 〈c1, c2〉, then π(〈c1, c2〉) can be derived by the fine
stationary condition of the Markov chain as

π(〈a1, a1〉) Pr(〈a1, am〉 | 〈a1, a1〉)
= π(〈a1, am〉) Pr(〈a1, a1〉 | 〈a1, am〉).

(19)

Substitute (18) into (19), it can be derived that

π(〈a1, a1〉)× e−
y(〈a1,am〉)

ω

NM(e−
y(〈a1,am〉)

ω +e−
y(〈a1,a1〉)

ω )

= π(〈a1, am〉)× e−
y(〈a1,a1〉)

ω

NM(e−
y(〈a1,am〉)

ω +e−
y(〈a1,a1〉)

ω )
.

(20)

It can be observed that Eq. (20) is symmetric and can
be balanced if π(〈c1, c2〉) has the form of π(〈c1, c1〉) =

γe−
y(〈c1,c2〉)

ω , where γ is a constant. Let Φ be the caching
policy space. To ensure

∑
〈c1,c2〉∈Φ

π(〈c1, c2〉) = 1, the station-

ary probability distribution π(〈c1, c2〉) should be given as

π(〈c1, c2〉) =
e−

y(〈c1,c2〉)
ω∑

〈cf1 ,cf2〉∈Φ

e−
y(〈cf1 ,c

f
2〉)

ω

(21)

Eq. (21) can be rewritten as

π(〈c1, c2〉) =
1∑

〈cf1 ,cf2〉∈Φ

e
y(〈c1,c2〉)−y(〈cf1 ,c

f
2〉)

ω

. (22)

Let 〈c∗1, c∗2〉 be the globally optimal solution that minimizes
the objective value, i.e., y(〈c∗1, c∗2〉) ≤ y(

〈
cf1 , c

f
2

〉
) for any〈

cf1 , c
f
2

〉
∈ Φ. It can be concluded that π(〈c∗1, c∗2〉) increases

as ω decreases, and π(〈c∗1, c∗2〉)→ 1 when ω → 0.

APPENDIX B
PROOF OF THEOREM 2

An optimization problem should satisfy that the objective
function and the inequation constraint functions are convex,
and the equation constraint function is affine over the decision
variables. It is easy to identify that the inequation and equation
constraint functions satisfy these conditions. We just need to
prove the convexity of the objective function.

In Eq. (12), it is intuitive that
∑
s∈S

(λosdcloud + wsλos)

and
∑
s∈S

∑
n∈N

max{λnsAs−Ans,0}
As

dn are convex over Λ. Let

x(Λ) =
∑
s∈S

∑
n∈N

λns

µns−λnsAs
. Denote by H = [hmn]m×n

the Hessian matrix of x(Λ), and hmn = 2µnsAs

(µns−Asλns)3
when

m = n (∀m ∈ N, n ∈ N), otherwise, hmn = 0. It can
be noticed that H is a positive definite matrix, and x(Λ) is
convex over Λ [28]. The objective function f(Λ) is the sum
of several convex functions over Λ, so f(Λ) is also convex
over Λ. Thus, we can conclude that problem P2 is a convex
optimization problem over the workload scheduling policy Λ.

ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation of China (61902036, 61922017, 61801011) and China
Postdoctoral Science Foundation 2019M650589.

2084



REFERENCES

[1] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer
with code offload,” in Proc. ACM International Conference on Mobile
Systems, Applications, and Services (MobiSys’10), 2010, pp. 49–62.

[2] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proc. ACM
European Conference on Computer Systems (EuroSys’11), 2011, pp.
301–314.

[3] M. Satyanarayanan, P.Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[4] Cisco, “Cisco global cloud index: Forecast and methodology, 2016-
2021,” White Paper, 2018.

[5] ETSI. Mobile edge computing (mec); framework and reference archi-
tecture, etsi gs mec 003 v1.1.1, 2016.

[6] K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satyanarayanan, “Just-in-
time provisioning for cyber foraging,” in Proc. ACM International Con-
ference on Mobile Systems, Applications, and Services (MobiSys’13),
2013, pp. 153–166.

[7] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in IEEE Conference on
Computer Communications (INFOCOM’18), 2018, pp. 207–215.

[8] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for energy-
constrained mobile edge computing in small-cell networks,” IEEE/ACM
Transactions on Networking, vol. 26, no. 4, pp. 1619–1632, 2018.

[9] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s hard to
share: joint service placement and request scheduling in edge clouds with
sharable and non-sharable resources,” in IEEE International Conference
on Distributed Computing Systems (ICDCS’18), 2018, pp. 365–375.

[10] V. Farhadi, F. Mehmeti, T. He, T. La Porta, H. Khamfroush, S. Wang,
and K. S. Chan, “Service placement and request scheduling for data-
intensive applications in edge clouds,” in IEEE Conference on Computer
Communications (INFOCOM’19), 2019, pp. 1279–1287.

[11] B. Liang, Mobile edge computing, V. W. S. Wong, R. Schober, D. W. K.
Ng, and L.-C. Wang, Eds. Cambridge University Press, 2017.

[12] X. Ma, S. Wang, S. Zhang, P. Yang, C. Lin, and X. S. Shen, “Cost-
efficient resource provisioning for dynamic requests in cloud assisted
mobile edge computing,” IEEE Transactions on Cloud Computing, 2019.

[13] L. Wang, L. Jiao, J. Li, and M. Mühlhäuser, “Online resource allocation
for arbitrary user mobility in distributed edge clouds,” in IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS’17), 2017,
pp. 1281–1290.

[14] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job dispatching
and scheduling in edge-clouds,” in IEEE Conference on Computer
Communications (INFOCOM’17), 2017, pp. 1–9.

[15] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in Proc. IEEE International Conference on
Computer Communications (INFOCOM), 2016, pp. 1–9.

[16] Y. Cui, J. Song, K. Ren, M. Li, Z. Li, Q. Ren, and Y. Zhang, “Soft-
ware defined cooperative offloading for mobile cloudlets,” IEEE/ACM
Transactions on Networking, vol. 25, no. 3, pp. 1746–1760, 2017.

[17] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms
for content distribution networks,” in IEEE Conference on Computer
Communications (INFOCOM’10), 2010, pp. 1–9.

[18] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Cooperative
edge caching in user-centric clustered mobile networks,” IEEE Trans-
actions on Mobile Computing, vol. 17, no. 8, pp. 1791–1805, 2017.

[19] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. Shen, “Content
popularity prediction towards location-aware mobile edge caching,”
IEEE Transactions on Multimedia, vol. 21, no. 4, pp. 915–929, 2019.

[20] G. Dán and N. Carlsson, “Dynamic content allocation for cloud-assisted
service of periodic workloads,” in IEEE Conference on Computer
Communications (INFOCOM’14), 2014, pp. 853–861.

[21] I. Hou, T. Zhao, S. Wang, K. Chan et al., “Asymptotically optimal
algorithm for online reconfiguration of edge-clouds,” in ACM Inter-
national Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc’16), 2016, pp. 291–300.

[22] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with predicted
future costs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 4, pp. 1002–1016, 2016.

[23] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, and J. L. Hellerstein,
“Dynamic service placement in geographically distributed clouds,” IEEE
Journal on Selected Areas in Communications, vol. 31, no. 12, pp. 762–
772, 2013.

[24] M. Dehghan, B. Jiang, A. Seetharam, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal re-
quest routing and content caching in heterogeneous cache networks,”
IEEE/ACM Transactions on Networking, vol. 25, no. 3, pp. 1635–1648,
2017.

[25] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas, “Joint
service placement and request routing in multi-cell mobile edge com-
puting networks,” in IEEE Conference on Computer Communications
(INFOCOM’19), 2019, pp. 10–18.

[26] S. M. Lynch, Introduction to Applied Bayesian Statistics and Estimation
for Social Scientists. Springer, 2007.

[27] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov Chain Monte
Carlo in Practice. Chapman and Hall, 1996.

[28] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

2085


