
IEEE TRANSACTIONS ON CLOUD COMPUTING 1

A Cloud-Edge Collaboration Framework for
Cognitive Service

Chuntao Ding, Ao Zhou, Yunxin Liu, Senior Member, IEEE, Rong N. Chang, Senior Member, IEEE,
Ching-Hsien Hsu, Senior Member, IEEE, Shangguang Wang, Senior Member, IEEE

Abstract—Mobile applications can leverage high-quality deep learning models such as convolutional neural networks and deep neural
networks to provide high-performance cognitive services. Prior work on deep learning models-based mobile applications in a
cloud-edge computing environment focuses on performing lightweight data pre-processing tasks on edge servers for cloud-hosted
cognitive servers. These approaches have two major limitations. First, it is uneasy for the mobile applications to assure satisfactory
user experience in terms of network communication delay, because the intermediary edge servers are used only to pre-process data
(e.g., images and videos) and the cloud servers are used to complete the tasks. Second, these approaches assume the pre-trained
deep learning models deployed on cloud servers are static, and will not attempt to automatically upgrade in a context-aware manner. In
this paper, we propose a cloud-edge collaboration framework that facilitates delivering cognitive services with long-lasting, fast
response, and high accuracy properties. We fist deploy a shallow model (i.e., EdgeCNN) on the edge server and a deep model (i.e.,
CloudCNN) on the cloud server. EdgeCNN can provide durable and rapid response cognitive services, because edge servers not only
provide computing resources for mobile applications, but also close to users. Then, we enable CloudCNN to assist in training
EdgeCNN to improve the performance of the latter. Thus, EdgeCNN also provides high-accuracy cognitive services. Furthermore,
because users may continue to upload data to edge servers in real-world scenarios, we propose to use the ongoing assistance of
CloudCNN to further improve the accuracy of the shallow model. Experimental results show that EdgeCNN can reduce the average
response time of cognitive services by up to 55.08% and improve accuracy by up to 26.70%.

Index Terms—Cognitive service, Cloud-Edge collaboration, cloud computing.

F

1 INTRODUCTION

1.1 Motivation & Problem Formulation

D EEP Learning Models (DLMs) have recently enjoyed a
great success in cognitive services [1], [2]. At the same

time, we are witnessing the explosive growth of mobile de-
vices. Deploying DLMs on such devices will definitely make
our lives easier by providing high-quality cognitive services.
However, high-performance DLMs often require a large
amount of computing and storage resources, which makes
them difficult to use in resource-limited mobile devices. To
address this problem, one solution is to use the mobile cloud
computing architecture [3], [4], i.e., the user first uploads the
captured data to the cloud, and then it is processed by the
DLMs deployed on the cloud to obtain results. Nevertheless,
uploading the captured data to the cloud may cause long
transmission delays because users are usually far away from
the cloud. The other solution is to deploy DLMs on mobile
devices. However, it is difficult to make mobile devices
provide long duration cognitive services because running
DLMs can quickly drain their battery. As a matter of fact,
many cognitive services require quick response and long

• C. Ding, A. Zhou, S. Wang are with the State Key Laboratory of
Networking and Switching Technology, Beijing University of Posts
and Telecommunications, Beijing 100876. E-mail: {ctding; aozhou; sg-
wang}@bupt.edu.cn.

• Y. Liu is with Microsoft Research, Beijing 100080 E-mail:
yunxin.liu@microsoft.com.

• R. Chang is with IBM T. J. Watson Research Center, Hawthorne, NY
10532. E-mail: rong@us.ibm.com.

• C. Hsu is with the College of Information and Electrical Engineering, Asia
University, Taiwan. E-mail:robertchh@gmail.com

Fig. 1. Architecture of the proposed framework.

duration. For instance, older people wear Google Glass to
navigate through the road, and people use Hololens 2 to
learn and collaborate on tasks. Mobile edge computing [5]–
[12] offers a new solution motif in which mobile devices can
offload partial or all of their tasks to edge servers located at
the edge of the network. Because edge servers are deployed
near users, it is technically feasible to provide users with
cognitive services through edge servers.

This paper addresses the problem of cognitive services in
the mobile edge computing paradigm, which is formulated
as follows. As illustrated in Fig. 1, the system architecture
consists of three layers: users, edge, and cloud. A small
amount of labeled data is stored on the edge server and



IEEE TRANSACTIONS ON CLOUD COMPUTING 2

denoted as {(xi, yi)}Ni=1, where N is the number of data,
xi ∈ Rd and yi ∈ Rc, d is the dimension of xi, c is the
number of classes. This paper takes convolutional neural
networks as an example. We deploy the convolutional neu-
ral network model on the edge server to learn fe, where
fe(We) = arg minf∈Fe

1
N

∑N
i=1H(yi, σ(f(xi;We))), and

Fe is a class of function from Rd to Rc. The function σ
is the softmax operation, where σ(z)k = ezk∑c

j=1 ezj
, and

1 ≤ k ≤ c. The function H is the cross entropy loss
H(y, ŷ) = −

∑c
i=1 yilogŷi, where yi is the true label of xi,

ŷi is xi’s predicted label, and We denotes parameters of the
model. This paper studies how to learn fe to improve the
accuracy of the model deployed on the edge server.

1.2 Limitations of Prior Art

Related studies on providing cognitive services based on
mobile edge computing are aimed at reducing response time
and overloading of the core network [2], [13], [14]. However,
they have two major limitations. First, it is uneasy to assure
satisfactory user experience in terms of network communi-
cation delay, because the intermediary edge servers are used
only to pre-process the data. Second, these approaches as-
sume that the pre-trained DLMs deployed on cloud servers
will not change, nor will it attempt to automatically improve
model accuracy in a context-aware manner.

1.3 Proposed Approach

In this paper, we propose a cloud-edge collaboration frame-
work for cognitive services. Fig. 1 illustrates the architecture
of the proposed framework. We deploy a shallow model
(called EdgeCNN) on the edge server. The EdgeCNN can
meet the use’s fast response requirements by reducing mul-
tiplication operations when inferring tasks. For instance, let
Φj ∈ Rwj×hj×cj denote input feature maps of the (j+1)th
convolutional layer, where wj and hj are the width and
height of each input feature map; and cj is the number
of input feature maps. The (j+1)th layer consists of cj+1
filters with size fw × fh × cj (where fw and fh are the
spatial size of the filter). It applies these filters onto the
input feature maps Φj to generate the output feature maps
Φj+1 ∈ Rwj+1×hj+1×cj+1 . This process involves a total of
cjfwfhcj+1wj+1hj+1 floating point operations. Thus, the to-
tal complexity of all layers is O(

∑m
j=1 cjfwfhcj+1wj+1hj+1),

where m is the number of layers. The more layers are, the
longer the inferring time is. EdgeCNN has a simple struc-
ture and can meet the user’s quick response requirements.
But an edge server collects only a small amount of data, and
training EdgeCNN from scratch can cause over-fitting prob-
lems [15] and consumes a lot of computing resources. In-
spired by the octopus that its “big brain” and “small brain”
can collaborate on complex tasks such as coordinating eight
tentacles and hundreds of sensitive suckers [16], [17], we
deploy a deep model (called CloudCNN) on the cloud
server to assist EdgeCNN to avoid over-fitting problem. We
can train CloudCNN on the cloud server for high accuracy
because it has rich computing and storage resources and
stores a large amount of data. The key idea of this paper is to
use CloudCNN to assist in training EdgeCNN and improve
the performance of the latter.

In addition, users may continuously upload the captured
data to edge servers. We propose to use this data to further
improve the performance of EdgeCNN. Therefore, the shal-
low model can provide faster response and higher accuracy
of cognitive services.

1.4 Technical Challenges and Our Solutions
The first technical challenge is how to use CloudCNN to assist in
training EdgeCNN to avoid the latter’s over-fitting problem [15].
It is difficult to train EdgeCNN with a small amount of
data to learn the distribution of the data. In addition, it
is challenging because well-trained convolutional neural
networks may be privacy-sensitive [18], [19] and cloud
servers typically store large amounts of private data, such
as medical data. Recently, Yosinski et al. [20] verified that
lower layer features are more general and can be used
as generic image descriptors. Note that the lower layers
represent layers closer to the input data, and the other layers
are higher layers. Inspired by this, we propose to use the
deep convolutional neural network to share its m (where m
is a positive integer) lower layers to assist in training the
shallow network, as shown in Fig. 1. The CloudCNN first
sends its m lower layers to each edge server. On the edge
server, some convolutional layers, some fully-connected lay-
ers, and one softmax layer are connected to m lower layers
to form the EdgeCNN. Then, the EdgeCNN is trained by
freezing its m lower layers and fine-tuning remaining layers
with the small amount of data. This means that EdgeCNN
uses the knowledge of the deep model to assist its training.
Thus, EdgeCNN can overcome the over-fitting problem.

The second technical challenge is how to use uploaded data
to further improve the accuracy of EdgeCNN. In real-world
scenarios, users may continuously upload unlabeled data
to the edge server. It is challenging to use unlabeled data
to train DLMs. To solve this challenge, we use the deep
model to predict the labels of uploaded data since it can
achieve high accuracy. That is, when receiving uploaded
data, the edge server first pre-processes these data, such
as object detection [21] and object segmentation [22]. Then,
performing EdgeCNN to get results. In addition, the edge
server also saves segmented objects. When the core network
load is low, the edge server uploads the segmented objects
to the cloud server. When receiving these objects, the cloud
server uses CloudCNN to predict the labels and send them
to edge servers. Finally, we use the labeled objects to retrain
EdgeCNN. This process is ongoing and adaptive. As the
number of labeled objects increases, EdgeCNN can further
improve its accuracy.

1.5 Novelty and Advantages over Prior Art
The technical novelty of this paper is to propose a cloud-
edge collaboration framework. The proposed framework
is generic and it can well incorporate most existing high-
performance DLMs. The technical depth of this paper is to
solve the over-fitting problem of the EdgeCNN and further
improve its accuracy by utilizing the uploaded unlabeled
data. The key advantages of the proposed framework over
previous work are two-fold: (i) EdgeCNN provides faster
response cognitive services. This is because the edge server
is close to users. In addition, the structure of EdgeCNN



IEEE TRANSACTIONS ON CLOUD COMPUTING 3

is simpler. (ii) EdgeCNN achieves higher accuracy. This
is because it not only uses the shared knowledge of the
deep networks, but also retrains itself using the continu-
ously uploaded data. Extensive experimental results show
that EdgeCNN can reduce the average response time by
55.08%. Compared with training from scratch, the accuracy
of EdgeCNN on CIFAR-10, MNIST and FASHION-MNIST
datasets improved by up to 26.70%, 8.76%, and 17.16%. It
is worth noting that with the assistance of CloudCNN, the
accuracy of EdgeCNN is close to the accuracy of the former.

The following paper is organized as follows. Section 2
reviews related work. Section 3 describes the design of the
proposed framework. Section 4 provides the experimental
evaluation. Section 5 concludes and outlines future work.

2 RELATED WORK

Cognitive services are a form of service provided by ar-
tificial intelligence analysis based on visual input, natural
language processing, and speech understanding [23], [24].
In recent years, there has been increasing interest in using
deep learning models to improve the performance of mobile
applications that provide cognitive services. Existing related
work can be divided into three categories: cloud-based [25],
device-based [26] and edge-based [13].

The cloud-based mobile application is to run DLMs on
cloud servers. That is, users first upload the captured data to
cloud servers. When receiving the uploaded data, the cloud
servers run DLMs to get results and send the results back to
users. For example, Kang et al. [25] explored ways to divide
deep neural network inference between mobile devices and
servers. Fang et al. [27] investigated scheduling techniques
to improve serving performance in multi-tenant mobile
offloading systems. Han et al. [28] designed an optimizing
compiler and runtime scheduler to systematically trade off
deep neural network classification accuracy and remotely
service each request. Although these approaches achieve
high accuracy, users are far away from the cloud server,
which causes long network transmission delays. Therefore,
they are not easy to meet the user’s rapid response needs.

The device-based mobile application is to directly
run DLMs on mobile devices. Compared with cloud
servers, mobile devices are constrained by limited com-
puting and storage resources. Unfortunately, DLMs are
usually resource-demanding. To enable on-device DLMs,
approaches roughly fall into two categories. The first cate-
gory is to design novel network architectures. For example,
Howard et al. [26] proposed MobileNet, which uses depth-
wise separable convolutions to build light weight deep
neural networks. Zhang et al. [29] proposed ShuffleNet,
which utilizes point-wise group convolution and channel
shuffle to reduce computation cost while maintaining ac-
curacy. The second category is to use compression tech-
niques to compress DLMs to reduce its resource demands
at the expense of accuracy. For example, Hinton et al. [30]
proposed to transfer knowledge from a teacher network
to a student network by learning the class distribution via
softened softmax. Fang et al. [31] proposed NestDNN, which
takes the dynamics of runtime resources into account to
satisfy multiple users running CNN models. Akhil et al. [32]
proposed DeepEye, a match-box sized wearable camera that

can run multiple cloud-scale CNN models on the devices
and perform rich analysis of the captured data in near real-
time. However, the device-based mobile applications have
two limitations. First, they will reduce the duration for
mobile devices to provide cognitive services. Second, the
deployed DLMs are static and cannot be easily updated.

The edge-based mobile application is to provide cogni-
tive services based on mobile edge computing architecture.
Drolia et al. [13] used the caching model to minimize re-
sponse time by adaptively balancing load between the edge
server and the cloud server. Li et al. [14] proposed an edge
computing structure for Internet of Things (IoT) deep learn-
ing tasks. Authors divide the learning networks into two
parts. One part includes lower layers deployed into edge
servers, while another part includes higher layers deployed
into cloud servers. The edge servers load the intermediate
data from the lower layers and then transferred data to
the cloud server as the input data for the higher layers.
Liu et al. [2] split the food recognition tasks between the
edge devices and the cloud server. In the proposed system,
the edge devices perform light-weight computation on the
food images for food recognition. Then, the edge devices
upload the pre-processed images to the cloud server for
further processing. Other related work that benefits from
the mobile edge computing architecture includes [1], [33].
However, they only use edge servers to pre-process data
and use cloud servers for further processing. Because users
are far away from cloud servers, they are also not easy to
provide fast response cognitive services.

3 DESIGN OF THE PROPOSED FRAMEWORK

3.1 Architecture

Fig. 1 illustrates the architecture of the proposed framework,
which consists of three layers of components: mobile devices
(users), edge servers and cloud servers. The composition
and function of each component are introduced as follows:

3.1.1 Mobile Devices
Mobile devices refer to some smart devices with limited
computing and storage resources, such as Google Glass,
Microsoft Hololens, Smartphone, and Apple Watch. We
make mobile devices only responsible for lightweight tasks,
such as capturing data, uploading data and receiving results
from edge servers to extend their battery life.

3.1.2 Edge Servers
Edge servers are usually a group of servers that are de-
ployed at the edge of the network, such as sensors, home
gateways, and micro servers [34]. We use edge servers to
perform operations for cognitive services because they are
close to users. To this end, we make edge servers responsible
for pre-processing the received data, training and perform-
ing the shallow models to get results, and uploading the
pre-processed data to the cloud servers.

3.1.3 Cloud Servers
Cloud servers are usually AliCloud servers, Amazon Web
Service Cloud servers, Microsoft Azure Cloud servers, and
Google Cloud servers. Considering that the cloud server has



IEEE TRANSACTIONS ON CLOUD COMPUTING 4

Fig. 2. The detailed process of the proposed framework.

rich computing and storage resources, we make it respon-
sible for computationally intensive tasks, such as training
complex models.

In the proposed framework, EdgeCNN improves its per-
formance with the assistance of CloudCNN. However, the
interaction between the cloud server and the edge server is
transparent to the user, and the user only interacts with the
edge server. When a user uses a mobile device to request a
cognitive service, the user uploads image data to the nearest
edge server. After receiving the data, the edge server first
pre-processes it (such as object detection and segmentation),
then runs EdgeCNN to get the result and sends it to the user.

3.2 Detailed Process of the Proposed Framework

Fig. 2 illustrates the detailed process of the proposed frame-
work. In this paper, we aim to use edge servers to complete
all operations to provide cognitive services, which means
that after capturing the data, the mobile device uploads the
data directly to the edge server without any preprocessing.
This is because mobile devices can reduce their computing
load by offloading all operations to the edge server, thereby
extending their battery life. In addition, because users are
close to the edge server, the transmission delay between
them is small.

However, using EdgeCNN directly may get low-
accuracy because a single edge server collects only a small
amount of data, and training with these data will cause
EdgeCNN to overfit. To address this problem, we propose
to use the cloud server to assist the edge server. That is,
we first train CloudCNN with a large amount of data. As
shown in Fig. 2, CloudCNN is deployed on the cloud server,
and EdgeCNN is deployed on the edge server. CloudCNN
is more complex and has higher accuracy. In order to
reduce inference time when providing cognitive services,
EdgeCNN has fewer layers. Furthermore, to evaluate the
guidance of different layers, we design different layers of
EdgeCNN, as shown in Fig. 3. We use CloudCNN to assist
in training EdgeCNN by sharing its m lower layers. Thus,

Fig. 3. Example network architectures of CloudCNN and EdgeCNN.
Note that, EdgeCNN-3, EdgeCNN-5, and EdgeCNN-10 represent
EdgeCNN with 3, 5, and 10 convolution layers, respectively.

the EdgeCNN can avoid training from scratch, which saves
a lot of computing resources and improves accuracy.

Furthermore, in reality, users may continue to upload
data to edge servers, we propose to use the uploaded data
to assist in retraining EdgeCNN to further improve its
performance. As shown in Fig. 2, the detailed process of
CloudCNN’s assistance can be divided into initialization
phase and update phase.



IEEE TRANSACTIONS ON CLOUD COMPUTING 5

3.2.1 Initialization Phase
In the initialization phase, we first use a large amount of
data to train CloudCNN on the cloud server. Then, we
extract its m lower layers to assist in training of EdgeCNN.

Let Wc denote parameters of well-trained CloudCNN,
Wmc denote parameters of its pre-m lower layers, and
We denote parameters of EdgeCNN. With the assistance
of CloudCNN, we use Wmc to replace parameters of pre-
m lower layers of EdgeCNN. Thus, we only need to train
We−mc, where We−mc represents the remaining parameters
of EdgeCNN after Wmc is removed. Therefore, given train-
ing data {xi, yi}Ni=1, EdgeCNN is trained to optimize the
following loss function:

fe(We−mc)= 1
N

∑N
i=1H(yi, σ(f(xi;We−mc))) (1)

When the edge server receives the m lower layers (i.e.,
Wmc), the n (where n is a positive integer) higher layers
(the parameters are randomly initialized) are connecting to
form EdgeCNN, as shown in Fig. 2. After that, EdgeCNN is
trained by freezing Wmc and fine-tuning We−mc, as shown
in Eq. 1. Note that the freeze operation means that the
frozen parameters will not change when training the neural
network model. With the shared m lower layers, EdgeCNN
not only improves its accuracy but also saves a lot of
computing resources. The reason is that EdgeCNN inherits
the knowledge of CloudCNN and only needs to train n
higher layers. The detailed initialization process is given
in Algorithm 1. Note that, W∗

e−mc represents the updated
value of W∗

e−mc. Connector ∪ represents connecting two
parameter sets. For example, S1 represents the first m-
layer parameters of a neural network model, S2 represents
the remaining parameters of this neural network model,
and S1 ∪ S2 represents the parameters of the entire neural
network model.

Algorithm 1: Initialization Phase

Input: {xi, yi}Ni=1,Wc,Wmc, CloudCNN
Output: EdgeCNN

1 CloudCNN sends its m lower layers (i.e., Wmc) to
edge servers;

2 On each edge server, the n higher layers connect m
lower layers to form an EdgeCNN;

3 Initialize We−mc to small random values;
4 W∗

e−mc←arg minWe−mc
fe(We−mc);

5 W∗
e←Wmc ∪W∗

e−mc;
6 return EdgeCNN with W∗

e ;

3.2.2 Update Phase
Through the initialization phase, EdgeCNN overcomes its
over-fitting problem with the shared layers of CloudCNN.
In real-world scenarios, users may continuously upload
data to edge servers. In DLMs-based mobile applications,
training data is extremely important for improving the per-
formance of mobile applications [35]. Inspired by this, we
use uploaded data to further assist in training EdgeCNN.
However, this is difficult because these data are unlabeled.

To circumvent this problem, we propose to continue
to use CloudCNN. Because CloudCNN is a high-accuracy

deep convolutional neural network, such as ResNet [36],
which achieves an accuracy of 96.43% on ImageNet. It
is applicable to use CloudCNN to predict labels of the
uploaded data. In this paper, we assume that CloudCNN al-
ways predicts accurate labels. After receiving the uploaded
data, the edge server first pre-processes it. For example, we
use object detection and object segmentation techniques to
obtain segmented objects. This is because object detection
and object segmentation can remove some information that
is not related to the object, which can reduce the amount
of data transmission between the edge server and the cloud
server without affecting the object data. Object detection,
object segmentation, and object recognition are different
convolutional neural network models, and we focus on
object recognition. Note that, object detection and segmen-
tation techniques have been well studied in many previous
studies. Then, the edge server runs EdgeCNN to get results
and return the results to users. It is worth noting that
the edge server saves segmented objects. When the core
network load is low, the edge server uploads the segmented
objects to the cloud server. After receiving the objects, the
cloud server uses CloudCNN to predict their labels and
sends the labels to edge servers that store corresponding
objects. Thus, EdgeCNN can be retrained with those labeled
objects. Similar to the initialization phase, EdgeCNN is
retrained by freezing its m lower layers and fine-tuning n
higher layers.

Let W∗
e denote parameters of EdgeCNN after the

initialization phase. We assume that when the number
of newly labeled objects accumulates to M , we start to
retrain EdgeCNN. The accumulated objects are denoted
as {(xi, yi)}Mi=1. Thus, we use {(xi, yi)}N+M

i=1 to retrain
EdgeCNN to improve its accuracy. EdgeCNN is retrained
by optimizing the following loss function:

fe(W
′

e−mc)= 1
N+M

∑N+M
i=1 H(yi, σ(f(xi;W

′

e−mc))) (2)

where W
′

e−mc represents the remaining parameters of W∗
e

after Wmc is removed.
CloudCNN can continuously predict labels and send

them to the edge server that stores the corresponding data.
Therefore, the training process of EdgeCNN is ongoing. The
detailed update process is given in Algorithm 2 .

Algorithm 2: Update Phase
Input: EdgeCNN with parameters W∗

e , objects
{xi}Mi=1, existing visual data set {(xi, yi)}Ni=1,
CloudCNN

Output: EdgeCNNnew

1 When the core network load is low, edge servers
upload the visual data {xi}Mi=1 to the cloud server;

2 When the cloud server receives {xi}Mi=1, they use
CloudCNN to get the labels {yi}Mi=1;

3 The cloud server sends {yi}Mi=1 to edge servers;
4 W∗∗

e−mc←arg minW
′
e−mc

fe(W
′

e−mc), where W∗∗
e−mc

represents the updated value of W
′

e−mc;
5 W∗∗

e ←Wmc ∪W∗∗
e−mc;

6 return EdgeCNN with W∗∗
e ;

In summary, our framework enables the delivery of
cognitive services with three benefits: First, the framework



IEEE TRANSACTIONS ON CLOUD COMPUTING 6

TABLE 1
Statistics of datasets used in the experiments

Dataset Labels Training set Test set
CIFAR-10 10 50,000 10,000
MNIST 10 60,000 10,000
FASHION-MNIST 10 60,000 10,000

can provide long-lasting cognitive services. This is because
we shift computing workload from mobile devices to edge
servers, reducing the former’s computing burden. Second,
the framework can provide quick response cognitive ser-
vices. Since the user is closer to the edge server (usually
one hop), the transmission delay between them is small.
Furthermore, the EdgeCNN is simple, which also reduces
processing time. Therefore, the framework can provide
rapid response cognitive services. Third, the framework can
provide high-accuracy cognitive services. Through the col-
laboration of CloudCNN and EdgeCNN and the continuous
uploading data, the accuracy of the latter has been signifi-
cantly improved. It is worth noting the proposed framework
is universal, CloudCNN can be any other popular deep
neural networks, such as VGG [37] and ResNet [36].

In addition, with the development of the Internet of
Things (IoT) and 5G, millions of edge servers will be
deployed. Frequent uploading and downloading of data
between edge servers and cloud servers will increase the
bandwidth burden of the core network. It is worth noting
that our framework can alleviate this problem to some ex-
tent by uploading only segmented objects and downloading
some layers of the model.

4 EXPERIMENTS

In this section, we first implement a prototype system to
verify that EdgeCNN has a fast response. Then, we present
the experimental results on three most commonly used
datasets (i.e., CIFAR-10 [38], MNIST [39], and FASHION-
MNIST [40]) for evaluating visual-related cognitive services.
We show that with the assistance of CloudCNN, EdgeCNN
can improve its accuracy (i.e., Top-1 accuracy) and shorten
training time. In addition, EdgeCNN can further improve
its accuracy by using continuously unlabeled data.

4.1 Datasets
We evaluate the proposed framework on three datasets.
These datasets are shown in Table 1 and briefly summarized
below.

CIFAR-10 [38] is composed of 32 × 32 RGB images
belonging to 10 different classes. The dataset is partitioned
into two sets: a training set with 50,000 images and a test set
with 10,000 images.

MNIST [39] is a popular dataset for handwritten digit
recognition with 10 classes (0-9). The training set contains
60,000 images and the test set contains 10, 000 images. All
samples are 28× 28 grayscale images.

FASHION-MNIST [40] is composed of 28×28 grayscale
images of 70, 000 fashion products from 10 categories, with
7,000 images per category. The training set has 60, 000
images and the test set has 10,000 images.

Size of images

60K 124K 256K 512K 1024K 2048K 4096K

R
e
s
p
o
n
s
e
 t
im

e
 v

s
. 
U

p
lo

a
d
 t
im

e
 (

s
)

10
-1

10
0

10
1

10
2

RT: Performing tasks on the cloud server

UT: Uploading images to the cloud server

RT: Performing tasks on the edge server

UT: Uploading images to the edge server

Fig. 4. Response time vs upload time of two different schemes in LTE
situation. RT indicates response time, and UT indicates upload time.

Size of images

60K 124K 256K 512K 1024K 2048K 4096K

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

0

0.5

1

1.5
Using CloudCNN to perform vision tasks

Using EdgeCNN1-3 to perform vision tasks

Fig. 5. Execution time of two different schemes.

4.2 Quantitative Mobile Edge Computing Architecture

Compared with the cloud, the edge can provide cognitive
services with faster responses. In this section, we implement
a prototype system to quantify this. We first deploy the
EdgeCNN1-3 (see 4.3.1 for details) on the edge server. After
that, we deploy a 19-layer convolutional neural network as
CloudCNN on the cloud server. For easy of implementa-
tion, CloudCNN and EdgeCNN1-3 contain only one type
of convolutional filter. The structures of CloudCNN and
EdgeCNN1-3 are shown in Fig. 3.

4.2.1 Experimental Setup

The experiment environment consists of three components:
the mobile device, the edge server, and the cloud server.
Their configuration is as follows:

Mobile Device: The Huawei Honor 8 smartphone is
equipped with 4 Cortex A72 2.3 GHz and Android 7.0 as
a mobile device to request cognitive service.

Edge Server: A computer is equipped with an Intel i5-
4590@3.3 GHz CPU and 12 GB RAM as an edge server for
providing computing and storage resources for tasks.

Cloud Server: AliCloud server is equipped with 4 quad-
core 2.5 GHz Intel Xeon E5-2682 v4 and 16 GB RAM as the
cloud server.

In addition, we build a base station based on open air
interface. The base station works on Band7 (uplink 2500
MHz-2570 MHz, downlink 2620 MHz-2690 MHz). Note
that, the base station is next to the edge server. The base
station is responsible for communication and the edge
server is responsible for providing computing and storage
resources for the mobile application. The upload link rate
of the Huawei honor 8 smartphone connected to the base
station through LTE is 1, 000 KB/s, and the downlink rate is
1.36 MB/s. The upload link and downlink rate between the
smartphone and the edge server via WiFi are 9 MB/s.



IEEE TRANSACTIONS ON CLOUD COMPUTING 7

Size of images

60K 124K 256K 512K 1024K 2048K 4096K

R
e
s
p
o
n
s
e
 t
im

e
 v

s
. 
U

p
lo

a
d
 t
im

e
 (

s
)

10
-2

10
-1

10
0

10
1

RT: Performing tasks on the cloud server

UT: Uploading images to the cloud server

RT: Performing tasks on the edge server

UT: Uploading images to the edge server

Fig. 6. Response time vs upload time of two different schemes in WiFi
situation. RT indicates response time, and UT indicates upload time.

4.2.2 Response Time
EdgeCNN1-3 has a faster response. Fig. 4 illustrates the re-
sponse time and upload time of two different schemes
(i.e., using CloudCNNr and EdgeCNN1-3 to provide cog-
nitive services). Specifically, we observe that compared with
CloudCNN, EdgeCNN1-3 can reduce the average response
time by 55.08% (when the image data size is 60 K). This is
because the edge server is closer to users and the structure
of EdgeCNN1-3 is simpler.

Uploading images to the edge server can significantly reduce
upload time. Fig. 4 shows that uploading images to the edge
server can reduce the average upload time by 55.42% (when
the image data size is 512 K) compared with uploading
images to the cloud server. The reason is that users are closer
to the edge server. In general, the distance between mobile
devices and edge servers is one hop. Results illustrate the
necessity of using edge servers to provide cognitive services.

EdgeCNN1-3 has shorter inference time. As illustrated in
Fig. 5. Compared with CloudCNN, EdgeCNN1-3 can reduce
the average inference time by 37.68% (when the image
data size is 60 K). Because CloudCNN’s structure is more
complicated, it will consume longer inference time due to a
large number of multiplication operations. This also shows
that it is necessary to deploy a shallow model to meet the
requirements of users’ fast-responsive cognitive services.

In addition, we also investigate the response time and
upload time in WiFi situation, as shown in Fig. 6. Fig. 6
shows similar observations in the case of LTE. For example,
compared with CloudCNN, EdgeCNN1-3 can reduce the
average response time by 40.26%.

In the 5G, the transmission rate between users and base
stations is faster. Therefore, edge servers can provide faster
response cognitive services.

4.3 Performance of the EdgeCNN
4.3.1 Experimental Setup
CloudCNN consists of four types of convolutional layers,
one max-pooling layer, and one fully-connected (fc) layer
with a final 10-way softmax. We only use one type of
kernel with the size of 3×3, which is the smallest size to
capture the notion of left/right, up/down, center [37]. The
first type of convolutional layer consists of 3 layers with 32
kernels per layer. The second type of convolutional layer
consists of 2 layers with 48 kernels per layer. The third type
of convolutional layer consists of 5 layers with 80 kernels
per layer. The fourth type convolutional layer consists of

5 layers with 128 kernels per layer. Fc layers have 1024
neurons.

EdgeCNN ends with a max-pooling layer and a fc layer
with a final 10-way softmax. Similar, the fc layer has 1024
neurons. The max-pooling, dropout ratio and learning rate
are same as CloudCNN. In CloudCNN and EdgeCNN, all
convolutional layers are equipped with the ReLU [41].

We first use the training set Xtrn to train Cloud-
CNN. EdgeCNN0 represents the shallow convolutional
neural network model that is trained from scratch, and
EdgeCNN1 represents the shallow CNN model that is
trained with shared layers of CloudCNN. Their examples
are shown in Fig. 3. Specifically, EdgeCNN0-3, EdgeCNN0-
5, and EdgeCNN0-10 represent EdgeCNN0 with 3, 5, and
10 convolutional layers. EdgeCNN1-3, EdgeCNN1-5, and
EdgeCNN1-10 represent EdgeCNN1 with 3, 5, and 10 con-
volutional layers. We build above models on TensorFlow.

The training procedures of CloudCNN and EdgeCNN
follow [37], [41]. That is, the training is carried out by
using mini-batch gradient descent with momentum. The
batch size was set to 32, momentum to 0.9. Max-pooling
is performed over a 2×2 pixel window, with stride 1. The
dropout ratio is set to 0.25. We split the training set Xtrn

into a training set Xtrn1 and a validation set Xval1, and
their ratio is 9:1. The learning rate was initially set to 0.01,
and then decreased by a factor of 10 when the validation
set Xval1 accuracy stopped improving. In testing, we adopt
the standard 10-crop testing. The accuracy of CloudCNN
on MNIST, CIFAR-10, and FASHION-MNIST datasets are
99.48%, 87.80%, 93.50%, respectively. Training ends if the
error did not drop for 30 epochs or if the learning rate was
reduced by a factor of more than 1,000 in total. When the
number of images is the least, EdgeCNN represents the
edge model of the initialization phase. When the number
of images increases, EdgeCNN represents the edge model
of the update phase. For example, on the MNIST dataset,
when the number of images is 120, EdgeCNN1-3 represents
the edge model of the initialization phase. When the number
of images is 240 or more, EdgeCNN1-3 represents the edge
model of the update phase. To fair compare EdgeCNNs and
CloudCNNs, we report the results on the test set.

4.3.2 EdgeCNN’s Accuracy on CIFAR-10
EdgeCNN1 can significantly improve accuracy, especially when
there is a small number of labeled images. Fig. 7 shows that the
accuracy of six EdgeCNNs on CIFAR-10 dataset. Fig. 7 (c)
shows that, compared with EdgeCNN0-10, the accuracy of
EdgeCNN1-10 can be increased by 26.70% (when the num-
ber of labeled images is 500). The reason is that when the
number of labeled images is small, EdgeCNN0 has difficulty
converging and learning the distribution of the data when
training from scratch. However, CloudCNN can easily learn
the distribution of the data by using a considerable large
number of labeled images on the cloud server. By inheriting
the knowledge of the shared layers, the EdgeCNN1 can
also easily learn the distribution of the data. Therefore,
EdgeCNN1 achieves higher accuracy.

In addition, Figs. 7 (a), (b) and (c) show that when
the number of images is 100, EdgeCNN0-3, EdgeCNN0-5
and EdgeCNN0-10 have low accuracy. This is because they
suffer from over-fitting problems due to the small amount



IEEE TRANSACTIONS ON CLOUD COMPUTING 8

Number of training images

100 500 1000 1500 2000 2500 3000 3500 4,000 4500 5,000

A
c
c
u
ra

c
y
 (

%
)

10

20

30

40

50

60

EdgeCNN0-3

EdgeCNN1-3

(a)

Number of training images

100 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

A
c
c
u

ra
c
y
 (

%
)

20

30

40

50

60

70

EdgeCNN0-5

EdgeCNN1-5

(b)

Number of training images

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
c
c
u

ra
c
y
 (

%
)

20

40

60

80

EdgeCNN0-10

EdgeCNN1-10

(c)
Fig. 7. Accuracy of EdgeCNN0 and EdgeCNN1 with different number of training images on CIFAR-10 dataset.

TABLE 2
Accuracy comparison of different models with different number of training images on MNIST dataset

Model/Number of training images 120 240 360 480 600 720 840 960 1080 1200

EdgeCNN0-3 74.36 82.96 88.35 89.04 90.00 90.45 90.68 91.98 93.67 93.46

EdgeCNN1-3 83.12 88.97 89.76 90.17 91.97 94.04 94.65 95.31 95.41 95.47

EdgeCNN0-5 83.38 91.94 91.12 93.75 93.40 93.61 95.08 95.35 96.40 96.54

EdgeCNN1-5 84.39 92.81 93.49 94.14 95.50 96.09 96.40 96.56 96.65 96.81

EdgeCNN0-10 84.75 89.91 93.01 94.69 95.04 95.85 95.31 96.11 94.62 96.19

EdgeCNN1-10 85.17 94.51 95.14 95.12 96.20 96.42 96.49 96.99 97.05 97.20

TABLE 3
Accuracy comparison of different models with different number of training images on FASION-MNIST dataset

Model/Number of training images 120 240 360 480 600 720 840 960 1080 1200

EdgeCNN0-3 58.61 68.74 72.01 74.40 75.93 75.98 76.06 77.08 78.01 78.77

EdgeCNN1-3 75.77 78.67 82.04 83.39 84.05 84.34 84.46 85.49 85.59 86.00

EdgeCNN0-5 63.91 69.34 77.38 78.23 78.73 78.54 79.17 79.69 80.73 80.37

EdgeCNN1-5 78.21 82.55 84.15 84.53 86.12 86.26 86.63 87.66 87.80 88.23

EdgeCNN0-10 65.66 71.47 76.02 76.14 77.84 78.23 78.55 80.36 81.00 81.22

EdgeCNN1-10 77.59 82.61 84.15 85.68 86.55 86.48 86.78 87.64 88.01 88.23

Number of training images

6000 120001800024000300003600042000480005400060000

A
c
c
u

ra
c
y
 (

%
)

96.5

97

97.5

98

98.5

99

99.5

EdgeCNN0-3

EdgeCNN1-3

(a)

Number of training images

6000 120001800024000300003600042000480005400060000

A
c
c
u

ra
c
y
 (

%
)

98.2

98.4

98.6

98.8

99

99.2

99.4

EdgeCNN0-5

EdgeCNN1-5

(b)

Number of training images

6000 120001800024000300003600042000480005400060000

A
c
c
u
ra

c
y
 (

%
)

98.5

99

99.5

EdgeCNN0-10

EdgeCNN1-10

(c)
Fig. 8. Accuracy of EdgeCNN0 and EdgeCNN1 with different number of training images on MNIST dataset.

of training data. However, with the shared layers of the
CloudCNN, EdgeCNN1-3, EdgeCNN1-5 and EdgeCNN1-
10 have higher accuracy. The reason is that with the shared
layers of the CloudCNN, these models can use the knowl-
edge of the deep model to learn the distribution of data,
rather than learning from scratch. This indicates that with
the assistance of the deep model, EdgeCNN can avoid the
over-fitting problem.

Continuously uploaded data can further improve the accu-
racy of EdgeCNN. Fig. 7 (a) shows that when the number
of training data is increased from 100 to 5,000, the accu-
racy of EdgeCNN1-3 is increased by 25.03%. This indi-
cates that with the labeled data provided by the Cloud-
CNN, EdgeCNN can further improve accuracy. Because
EdgeCNN0 does not have labeled data, it can only have
initial accuracy. For example, Fig. 7 (a) illustrates the ac-
curacy of EdgeCNN0-3 is 10% when the training data is
100. To compare EdgeCNN0 and EdgeCNN1 fairly, Fig. 7

also shows the accuracy of EdgeCNN0 as the labeled data
increases. Fig. 7 (a) shows that the accuracy of EdgeCNN0-3
is increased by 33.77% when the number of training data is
increased from 100 to 5000. This is because a large amount of
training image data helps to characterize the distribution of
image data. The results also show that for real-world deep
learning model-based applications, it is crucial to collect
sufficient trainable data.

4.3.3 EdgeCNN’s accuracy on MNIST& FASHION-MNIST

We observe similar observations from the results of CIFAR-
10 dataset that with the shared layers of CloudCNN, EdgeCNN1
can improve its accuracy, and can further improve its accuracy
with labeled data. Table 2 shows that when the number
of labeled images is 120, the accuracy of EdgeCNN1-3 is
increased by 8.76% compared with EdgeCNN0-3. Table 3
shows that, compared with EdgeCNN0-3, when the number



IEEE TRANSACTIONS ON CLOUD COMPUTING 9

Number of training images

6000 12000 18000 24000 30000 36000 42000 48000 54000 60000

A
c
c
u
ra

c
y
 (

%
)

84

86

88

90

92

94

EdgeCNN0-3

EdgeCNN1-3

(a)

Number of training images

6000 12000 18000 24000 30000 36000 42000 48000 54000 60000

A
c
c
u
ra

c
y
 (

%
)

84

86

88

90

92

94

EdgeCNN0-5

EdgeCNN1-5

(b)

Number of training images

6000 120001800024000300003600042000480005400060000

A
c
c
u

ra
c
y
 (

%
)

84

86

88

90

92

94

EdgeCNN0-10

EdgeCNN1-10

(c)
Fig. 9. Accuracy of EdgeCNN0 and EdgeCNN1 with different number of training images on FASHION-MNIST dataset.

of labeled images is 120, the accuracy of EdgeCNN1-3 is
increased by 17.16%.

In addition, we investigate the accuracy of EdgeCNNs
when there is a large number of training images on MNIST
and FASHION-MNIST datasets. As shown in Fig. 8 and
Fig. 9. We observe that:

With the assistance of CloudCNN, the accuracy of EdgeCNN
can be further improved even if the number of training images
is large. On MNIST and FASHION-MNIST datasets, when
the number of training images is 60,000, both CloudCNN
and EdgeCNN are trained based on the same training set.
CloudCNN can further improve the accuracy of EdgeCNN
by sharing its m (3, 5, and 10) lower layers. Fig. 8 (a) shows
that when the number of labeled images is 60,000, the accu-
racy of EdgeCNN1-3 is increased by 1.26% compared with
EdgeCNN0-3. This may be because CloudCNN extracts
better features (features that are beneficial to accuracy), and
with the shared layers, EdgeCNN can move closer to these
better features.

With the assistance of CloudCNN, the accuracy of EdgeCNN
is close to the accuracy of CloudCNN with the same training
set. When the number of training images is 60,000, Fig. 9
shows that the accuracy of EdgeCNN1-3, EdgeCNN1-5 and
EdgeCNN1-10 is 93.15%, 93.30% and 93.09%. The accuracy
of CloudCNN is 93.50%. This indicates the importance of
using CloudCNN to assist in training EdgeCNN.

4.3.4 Training Time on Above Three Datasets
EdgeCNN1 has less training time. Fig. 10 shows the training
time of different EdgeCNNs on three datasets when the
number of training samples is 120, 100, and 120. To be
exact, Fig. 10 shows that on CIFAR-10 dataset, EdgeCNN1-
10 has 86.57% less training time than EdgeCNN0-10 lay-
ers; on MNIST dataset, EdgeCNN1-10 has 45.15% less
training time than EdgeCNN0-10; on FASHION-MNIST
dataset, EdgeCNN1-3 has 45.47% less training time than
EdgeCNN0-3. This is because CloudCNN shares itsm lower
layers with EdgeCNN1. EdgeCNN1 inherits the knowledge
of CloudCNN, it only needs to fine-tune the n higher
layers, so it can have faster convergence speed. Therefore,
EdgeCNN1 training with the shared layers of CloudCNN
converges faster.

4.3.5 Inference Time on Above Three Datasets
The more layers are, the longer the inferring time is. Fig. 11
shows the inference time of different layers of EdgeCNNs
on the CIFAR-10 dataset. As shown, when the number
of test images is 2,000, the inference time of EdgeCNN1-
3 is 51.87% and 23.28% less than the inference time of
EdgeCNN1-10 and EdgeCNN1-5, respectively. The reason is

Datasets

CIFAR-10 MNIST FASHION-MNIST

T
ra

in
in

g
 T

im
e
 (

s
)

10
1

10
2

10
3

EdgeCNN0-3

EdgeCNN1-3

EdgeCNN0-5

EdgeCNN1-5

EdgeCNN0-10

EdgeCNN1-10

Fig. 10. Training time of different EdgeCNNs.

Number of test images

2000 4000 6000 8000 10000

In
fe

re
n

c
e

 T
im

e
 (

s
)

0

0.5

1

1.5

2

2.5

EdgeCNN1-3

EdgeCNN1-5

EdgeCNN1-10

Fig. 11. Inference time of different EdgeCNNs.

the EdgeCNN1-3 has fewer layers. Multiple layers of deep
learning models lead to longer inference time. Therefore,
EdgeCNN1-3 has a shorter inference time.

4.4 Summary
In summary, the above results indicate that a faster response
cognitive service can be provided by EdgeCNN because it is
simpler and the edge server is closer to the user. In addition,
EdgeCNN can achieve higher accuracy with the assistance
of CloudCNN and continuously updated data. Hence, the
proposed framework makes it possible to provide cognitive
services with long duration, fast response and high accuracy.

It is worth noting that the proposed Cloud-Edge collab-
oration framework is applicable to general-purpose deep
learning models. Existing high-performance neural net-
works can be elegantly incorporated. For instance, high-
performance complex neural network models can be de-
ployed on cloud servers as CloudCNN and we can design
some shallow deep learning models to be deployed on edge
servers as EdgeCNN. Through the Cloud-Edge collabora-
tion framework proposed in this paper, EdgeCNN provides
users with high-performance cognitive services. Experimen-
tal results show that with the assistance of the deep model,



IEEE TRANSACTIONS ON CLOUD COMPUTING 10

the shallow model can achieve accuracy comparable to the
deep model. This means that EdgeCNN can obtain the
similar performance as existing high-performance models,
such as ResNet.

5 CONCLUSION

In this paper, we propose a cloud-edge collaboration frame-
work for cognitive services. The proposed framework is
general-purpose for deep learning models and includes
initialization phase and update phase. The initialization
phase is static, using m lower layers of the deep model to
assist in training the shallow model. The update phase is
dynamic. The EdgeCNN is adaptive by using the uploaded
data and the ongoing assistance of the deep model. Experi-
mental results demonstrate the effectiveness of the proposed
framework in terms of faster responses and higher accuracy.

In our future work, we plan to deploy different types
of EdgeCNN on edge servers, and study the assistance
mechanisms of CloudCNN for these different types of
EdgeCNNs (e.g., with different width and depth) to make
them more accurate. That is, when each edge server receives
the CloudCNN parameters sent by the cloud server, we plan
to use scaling factors to expand or compress the received
parameters to match the structure of each EdgeCNN. In
addition, retraining EdgeCNNs on the edge server will
consume the computing resources of the edge server. When
there are many applications running on an edge server at
the same time, it will cause computing resource competition.
Therefore, studying when to retrain and rational use of edge
server resources is also the focus of the research. In response
to this problem, we plan to study the relationship between
the accuracy of EdgeCNN and the number of training
samples to determine the frequency of its retraining.

REFERENCES

[1] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. B.
Heinzelman, “Cloud-vision: Real-time face recognition using a
mobile-cloudlet-cloud acceleration architecture,” in Proceedings of
the IEEE Symposium on Computers and Communications. IEEE, 2012,
pp. 59–66.

[2] C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, Y. Ma, S. Chen, and
P. Hou, “A new deep learning-based food recognition system for
dietary assessment on an edge computing service infrastructure,”
IEEE Transactions on Service Computing, vol. 11, no. 2, pp. 249–261,
Mar. 2018.

[3] W. Wang, P. Xu, L. T. Yang, and J. Chen, “Cloud-assisted key
distribution in batch for secure real-time mobile services,” IEEE
Transactions on Services Computing, vol. 11, no. 5, pp. 850–863, Sep.
2018.

[4] K.-C. Wu, W.-Y. Liu, and S.-Y. Wu, “Dynamic deployment and
cost-sensitive provisioning for elastic mobile cloud services,” IEEE
Transactions on Mobile Computing, vol. 17, no. 6, pp. 1326–1338, Jun.
2018.

[5] H. Yin, X. Zhang, H. H. Liu, Y. Luo, C. Tian, S. Zhao, and
F. Li, “Edge provisioning with flexible server placement,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 4, pp.
1031–1045, Apr. 2017.

[6] Y. Sarikaya, H. Inaltekin, T. Alpcan, and J. S. Evans, “Stability
and dynamic control of underlay mobile edge networks,” IEEE
Transactions on Mobile Computing, vol. 17, no. 9, pp. 2195–2208, Sep.
2018.

[7] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user compu-
tation offloading for mobile-edge cloud computing,” IEEE/ACM
Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, Mar. 2016.

[8] N. Fernando, S. W. Loke, and W. Rahayu, “Computing with
nearby mobile devices: A work sharing algorithm for mobile edge-
clouds,” IEEE Transactions on Cloud Computing, vol. 7, no. 2, pp.
329–343, Jun. 2019.

[9] S. Wang, C. Ding, N. Zhang, X. Liu, A. Zhou, J. Cao, and X. Shen,
“A cloud-guided feature extraction approach for image retrieval in
mobile edge computing,” IEEE Transactions on Mobile Computing,
pp. 1–14, Sep. 2019.

[10] J. Wu, M. Dong, K. Ota, J. Li, W. Yang, and M. Wang, “Fog-
computing-enabled cognitive network function virtualization for
an information-centric future internet,” IEEE Communications Mag-
azine, vol. 57, no. 7, pp. 48–54, Jul. 2019.

[11] H. Li, K. Ota, and M. Dong, “Deep reinforcement scheduling
for mobile crowdsensing in fog computing,” ACM Transactions on
Internet Technology, vol. 19, no. 2, pp. 1–18, Apr. 2019.

[12] C. Zhao, M. Dong, K. Ota, J. Li, and J. Wu, “Edge-mapreduce-
based intelligent information-centric iov: Cognitive route plan-
ning,” IEEE Access, vol. 7, pp. 50 549–50 560, Apr. 2019.

[13] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier:
Edge-caching for recognition applications,” in Proceedings of the
37th International Conference on Distributed Computing Systems.
IEEE, 2017, pp. 276–286.

[14] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning
for the internet of things with edge computing,” IEEE Network,
vol. 32, no. 1, pp. 96–101, Jan. 2018.

[15] G. N. Karystinos and D. A. Pados, “On overfitting, generalization,
and randomly expanded training sets,” IEEE Transactions on Neural
Networks, vol. 11, no. 5, pp. 1050–1057, Sep. 2000.

[16] Z. L, S. G, A. C, F. T, and H. B, “Nonsomatotopic organization
of the higher motor centers in octopus,” Current Biology, vol. 19,
no. 19, pp. 1632–1636, Sep. 2009.

[17] X. Chen, L. Jiao, W. Li, and X. Fu, “Control of octopus arm
extension by a peripheral motor program,” Science, vol. 293, no.
5536, pp. 1845–1848, Sep. 2001.

[18] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning mod-
els that remember too much,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017,
pp. 587–601.

[19] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Steal-
ing machine learning models via prediction apis,” in Proceedings
of 25th USENIX Security Symposium. USENIX Association, 2016,
pp. 601–618.

[20] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable
are features in deep neural networks?” in Proceedings of the Inter-
national Conference on Neural Information Processing Systems. MIT
Press, 2014, pp. 3320–3328.

[21] Q. Hou, M.-M. Cheng, X. Hu, A. Borji, Z. Tu, and P. H. S. Torr,
“Deeply supervised salient object detection with short connec-
tions,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 41, no. 4, pp. 815–828, Apr. 2019.

[22] J. Han, R. Quan, D. Zhang, and F. Nie, “Robust object co-
segmentation using background prior,” IEEE Transactions on Image
Processing, vol. 27, no. 4, pp. 1639–1651, Apr. 2018.

[23] A. P. Sheth, H. Y. Yip, A. lyengar, and P. Tepper, “Cognitive services
and intelligent chatbots: Current perspectives and special issue
introduction,” IEEE Internet Computing, vol. 23, no. 2, pp. 6–12,
2019.

[24] A. lyengar, “Supporting data analytics applications which utilize
cognitive services,” in Proceedings of the IEEE Conference on Dis-
tributed Computing Systems. IEEE, 2017, pp. 1856–1864.

[25] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. N. Mudge, J. Mars,
and L. Tang, “Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge,” in Proceedings of the 32th International
Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 2017, pp. 615–629.

[26] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” in
arXiv:1704.04861, 2017, pp. 1–9.

[27] Z. Fang, J.-H. Lin, M. B. Srivastava, and R. K. Gupta, “Multi-
tenant mobile offloading systems for real-time computer vision
applications,” in Proceedings of the 20th International Conference on
Distributed Computing and Networking. IEEE, 2019, pp. 21–30.

[28] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Kr-
ishnamurthy, “Mcdnn: An approximation-based execution frame-
work for deep stream processing under resource constraints,” in



IEEE TRANSACTIONS ON CLOUD COMPUTING 11

Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2016, pp. 123–136.

[29] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2018, pp. 6848–6856.

[30] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” in arXiv:1503.02531, 2015, pp. 576–584.

[31] B. Fang, X. Zeng, and M. Zhang, “Nestdnn: Resource-aware multi-
tenant on-device deep learning for continuous mobile vision,” in
Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking. ACM, 2018, pp. 115–127.

[32] A. Mathur, N. D. Lane, S. Bhattacharya, A. Boran, C. Forlivesi, and
F. Kawsar, “Deepeye: Resource efficient local execution of multiple
deep vision models using wearable commodity hardware,” in
Proceedings of the 15th Annual International Conference on Mobile
Systems. ACM, 2017, pp. 68–81.

[33] P. Hu, H. Ning, T. Qiu, Y. Zhang, and X. Luo, “Fog computing
based face identification and resolution scheme in internet of
things,” IEEE Transactions on Industrial Informatics, vol. 13, no. 4,
pp. 1910–1920, Aug. 2017.

[34] A. Mehrabi, M. Siekkinen, and A. Y-Jääski, “Edge computing
assisted adaptive mobile video streaming,” IEEE Transactions on
Mobile Computing, vol. 18, no. 4, pp. 787–800, Apr. 2019.

[35] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unrea-
sonable effectiveness of data in deep learning era,” in Proceedings
of the IEEE International Conference on Computer Vision. IEEE, 2017,
pp. 843–852.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2016, pp. 770–778.

[37] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proceedings of the 3th
Internationa Conference on Learning Representations. IEEE, 2015, pp.
1–14.

[38] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Technical report, Apr. 2009.

[39] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 787–800, Nov. 1998.

[40] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel im-
age dataset for benchmarking machine learning algorithms,” in
arXiv:1708.07747, 2017, pp. 1–6.

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Proceedings of
the International Conference on Neural Information Processing Systems.
MIT Press, 2012, pp. 1106–1114.

Chuntao Ding received the B.S and M.S de-
grees from Sias University in 2012 and Soochow
University in 2015, respectively. He is currently
a Ph.D candidate at the State key Laboratory
of Networking and Switching Technology, Beijing
University of Posts and Telecommunications. His
research interests include Mobile Edge Comput-
ing, Deep Learning, Multi-task Learning.

Ao Zhou received the Ph.D degrees in Bei-
jing University of Posts and Telecommunications,
Beijing, China, in 2015. She is currently an Asso-
ciate Professor with State Key Laboratory of Net-
working and Switching Technology, Beijing Uni-
versity of Posts and Telecommunications. She
has published 20+ research papers. She played
a key role at many international conferences.
Her research interests include Cloud Computing
and Edge Computing.

Yunxin Liu is currently a Senior Researcher and
the research manager of Heterogeneous and
Extreme Computing (HEX) group at Microsoft
Research Asia (MSRA). He received his Ph.D. in
computer science from Shanghai Jiao Tong Uni-
versity in 2011 (through the SJTU-MSRA joint
PhD program), M.S. degree in computer science
from Tsinghua University in 2001, and B.S. de-
grees in mechanical engineering and computer
science from University of Science and Technol-
ogy of China in 1988. He has broad research

interests on mobile computing and edge computing, including power
management, security and privacy, sensing, and intelligent edge/mobile
systems. He is a senior member of the IEEE and a member of the ACM.

Rong Chang received his PhD degree in com-
puter science and engineering from the Univer-
sity of Michigan in 1990. He is with IBM Re-
search leading a global team creating innovative
IoT cloud services technologies. He holds 30+
patents and has published 40+ papers. He is
Member of IBM Academy of Technology, ACM
Distinguished Engineer, Chair of IEEE Computer
Society Technical Committee on Services Com-
puting, Editor-in-Chief of the International Jour-
nal of Cloud Computing and Associate Editor-in-

Chief of the IEEE Transactions on Services Computing.

Ching-Hsien Hsu is Chair Professor and Dean
of the College of Information and Electrical Engi-
neering, Asia University, Taiwan; His research in-
cludes high performance computing, cloud com-
puting, parallel and distributed systems, big data
analytics, ubiquitous/pervasive computing and
intelligence. He has published 200 papers in top
journals such as IEEE TPDS, IEEE TSC, ACM
TOMM, IEEE TCC, IEEE TETC, IEEE System,
IEEE Network, top conference proceedings, and
book chapters in these areas. Dr. Hsu is a Fellow

of the IET (IEE); Vice Chair of IEEE Technical Committee on Cloud
Computing (TCCLD), IEEE Technical Committee on Scalable Comput-
ing (TCSC), a Senior member of IEEE.

Shangguang Wang received his Ph.D degree
at Beijing University of Posts and Telecommu-
nications in 2011. He is Professor and Deputy
Director at the State Key Laboratory of Network-
ing and Switching Technology (BUPT). He has
published more than 150 papers, and played
a key role at many international conferences,
such as general chair and PC chair. His research
interests include service computing, cloud com-
puting, and mobile edge computing. He is a se-
nior member of the IEEE, and the Editor-in-Chief

of the International Journal of Web Science.


	Introduction
	Motivation & Problem Formulation
	Limitations of Prior Art
	Proposed Approach
	Technical Challenges and Our Solutions
	Novelty and Advantages over Prior Art

	Related Work
	Design of the Proposed Framework
	Architecture
	Mobile Devices
	Edge Servers
	Cloud Servers

	Detailed Process of the Proposed Framework
	Initialization Phase
	Update Phase


	Experiments
	Datasets
	Quantitative Mobile Edge Computing Architecture
	Experimental Setup
	Response Time

	Performance of the EdgeCNN
	Experimental Setup
	EdgeCNN's Accuracy on CIFAR-10
	EdgeCNN's accuracy on MNIST& FASHION-MNIST
	Training Time on Above Three Datasets
	Inference Time on Above Three Datasets

	Summary

	Conclusion
	References
	Biographies
	Chuntao Ding
	Ao Zhou
	Yunxin Liu
	Rong Chang
	Ching-Hsien Hsu
	Shangguang Wang




