
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Resource-aware Feature Extraction in Mobile
Edge Computing

Chuntao Ding, Ao Zhou, Xiulong Liu, Xiao Ma, Shangguang Wang, Senior Member, IEEE

Abstract—Mobile image recognition services, which provide people with image recognition services through the cameras of mobile
devices, are revolutionizing our lives. However, most existing cloud/edge-based approaches suffer from two major limitations, (i) Low
recognition accuracy and high network bandwidth pressure, and (ii) Not easy to extract features based on currently available resources
of mobile devices. In this paper, we propose a resource-aware feature extraction framework for mobile image recognition services. The
proposed framework consists of discriminative feature extraction (DFE) and NestDFE algorithms. The DFE algorithm can generate an
extractor E to extract discriminative features from the image data set on the edge server and images on mobile devices. Thus, the
proposed framework can achieve higher recognition accuracy and require mobile devices to upload less feature data to the edge
server. The NestDFE algorithm generates a single multi-capacity extractor that acts as a series of sub-extractors and enables mobile
devices to dynamically select sub-extractors. Experimental results show that the proposed framework improves recognition accuracy
by about 23% and reduces network traffic by about 76% compared with existing approaches.

Index Terms—Mobile edge computing, resource-aware, cloud computing, feature extraction.

F

1 INTRODUCTION

1.1 Motivation & Problem Formulation

MOBILE image recognition services greatly facilitate our
lives by providing various cognitive assistance [1]–

[5]. For example, Aipoly and TapTapSee can meet the needs
of visually impaired users, and CalorieMama snaps a pic-
ture of your meal and get all the nutritional information
you need to stay fit and healthy. The most popular mo-
bile image recognition services solution is based on cloud
computing technology [6]–[9]. Recently, mobile edge com-
puting provides high bandwidth and low latency potential
by deploying edge servers near mobile devices [10]–[17].
However, with the rapid development of the Internet of
Everything, the network bandwidth is still a bottleneck for
offloading a large amount of data to cloud/edge servers.
To alleviate this predicament, many approaches first pre-
process the captured image data and then upload it to
the edge server. Thus, they can reduce network traffic and
lessen the pressure of the network bandwidth.

In addition, the discriminative features of image data are
important for recognition tasks. However, it is difficult to ex-
tract discriminative features from images on mobile devices.
This is because mobile devices do not have image label
information, which is necessary to extract discriminative
features. Furthermore, the amount of available resources of
the mobile device may change frequently because it often
runs multiple applications at the same time, and we may
frequently launch new applications and close existing ones.

• Chuntao Ding, Ao Zhou, Xiao Ma and Shangguang Wang are with the
State Key Laboratory of Networking and Switching Technology, Beijing
University of Posts and Telecommunications, Beijing, China 100876. E-
mail: {ctding;aozhou;maxiao18;sgwang}@bupt.edu.cn.

• Xiulong Liu is with College of Intelligence and Computing, Tianjin
University, Tianjin, China. E-mail: xiulongliudut@gmail.com.
(Corresponding author: Ao Zhou.)

Fig. 1. System architecture for edge-based mobile image recognition.

Therefore, it is important to study how to extract the dis-
criminative features of images based on currently available
resources of mobile devices to reduce network traffic while
ensuring high recognition accuracy.

This paper studies the problem of mobile image recog-
nition services in the mobile edge computing context. As
illustrated in Fig. 1, the system architecture consists of two
types of components: mobile devices and edge servers.
Mobile devices communicate with edge servers through
base stations and connect to the base stations through LTE.
We assume that an image data set is stored on the edge
server and is represented as {(xi, yi)}Ni=1, where N is the
number of images, xi ∈ Rd, yi ∈ RK , d is the dimension
of xi, and K is the number of class labels. A mobile user
uploads the pre-processed image data to the edge server to
launch a request. After receiving the pre-processed image
data, the edge server processes it and sends back the label
information of the most similar image to the mobile user.

IEEE TRANSACTIONS ON MOBILE COMPUTING 2

1.2 Limitations of Prior Art

Prior related mobile image recognition approaches [18]–
[20] have two major drawbacks. First, they suffer from low
recognition accuracy and high network bandwidth pressure
because they aim to extract numerous features to preserve
the intrinsic structure of the image data, rather than extract-
ing effective discriminative features. Second, they are not
easily aware of the available resources of the mobile device,
and cannot dynamically determine the number of features.

1.3 Proposed Approach

In this paper, we propose a resource-aware feature ex-
traction framework, which includes discriminative feature
extraction (DFE) and NestDFE algorithms. In the proposed
framework, we first propose the DFE algorithm to gen-
erate an extractor E on the edge server by using the
information of the image data set. Then, we propose the
NestDFE algorithm to divide E into multiple sub-extractors
and form these sub-extractors into a single multi-capacity
extractor. Follow that, we use the multi-capacity extractor
to extract discriminative features from the image data set to
form multiple feature sets. In addition, we send the multi-
capacity extractor to the mobile device. When capturing an
image, the mobile device pre-processes it and selects the
appropriate sub-extractor from the multi-capacity extractor
based on its currently available resources to extract dis-
criminative features. Then, the mobile device uploads the
extracted feature data to the edge server. After receiving the
feature data, the edge server matches it with the feature data
on the feature set and finds the most similar feature data.
Finally, the edge server sends back the label of the most
similar feature data to the mobile user. The label is regarded
as the recognition result. The key idea of the proposed
framework is to dynamically extract discriminative features
from images based on the currently available resources of
the mobile device.

1.4 Challenges and Proposed Solutions

The first key challenge is to generate the extractor E to
extract effective discriminative features. Discriminative fea-
tures are important because they determine the quality of
services (QoS) of mobile image recognition, which includes
recognition accuracy and response time.

To address this challenge, we propose the DFE algorithm
to generate the extractor E to extract a small amount of
effective discriminative features from the image data set
and images on mobile devices, which can not only achieve
high recognition accuracy, but also reduce the response
time by reducing the network traffic and the number of
matching features. To achieve this purpose, we first build
a novel similarity function to preserve intra-class and inter-
class structures of the image data set. Then, we divide
intra-class and inter-class structures into four substructures
and introduce trade-off parameters to control their weights.
Thus, the DFE algorithm can generate an effective E to
extract effective discriminative features.

The second key challenge is to dynamically select extrac-
tors based on the current resources of mobile devices. The
amount of available resources of mobile devices changes

dynamically because we may frequently launch new ap-
plications and close existing ones. If there are not enough
available resources in the mobile device to support the
feature extraction operation, the extractor E cannot work.
To adapt the dynamic changes of available resources on mo-
bile devices, a straightforward solution is to divide E into
multiple sub-extractors and store all these sub-extractors. By
doing so, mobile devices can dynamically select appropriate
sub-extractors based on their available resources. However,
it is not wise to store all sub-extractors, because they take
up a lot of memory space.

To address this challenge, we propose the NestDFE
algorithm to generate a single multi-capacity extractor. In
the NestDFE algorithm, we divide E into multiple sub-
extractors, and these sub-extractors form a single multi-
capacity extractor. It is worth noting that the multi-capacity
extractor takes up the same amount of memory space as
E. This is because the sub-extractor with a smaller capacity
shares all its parameters to the sub-extractor with a larger
capacity, and nests itself in the latter so as not to occupy ad-
ditional memory space. Hence, the multi-capacity extractor
can save a lot of memory space and enable mobile devices
to dynamically select sub-extractors.

1.5 Novelty and Advantages over Prior Art

The key technical novelty of this paper is in proposing a
resource-aware feature extraction framework, which con-
sists of DFE and NestDFE algorithms. The key technical
depth of this paper is in generating the extractor to extract
effective discriminative features and nesting multiple sub-
extractors into a single multi-capacity extractor. The key ad-
vantages of the proposed framework over the previous ap-
proaches are two-fold: (i) It has higher recognition accuracy
and less network traffic because it uses the extractor E to
extract a small amount of effective discriminative features;
(ii) It can dynamically determine the number of features
extracted from the image based on the available resources
of mobile devices. Extensive experimental results show that,
compared with state-of-the-art approaches, the proposed
framework improves recognition accuracy by about 23%,
reduces the network traffic by about 76%.

The rest of the paper is organized as follows: Section 2
reviews the related work. Section 3 describes the proposed
framework. Section 4 presents our evaluation results and
analysis. Finally, we conclude this paper in Section 5.

2 RELATED WORK

Mobile image recognition mainly includes feature extraction
and feature matching. Feature matching is to match the
extracted features with the features on the feature set. Fea-
ture extraction aims to extract features from images. Many
classic feature extraction algorithms have been proposed,
such as scale invariant feature transform (SIFT) [21], local
binary pattern (LBP) [22] and principle component analysis
(PCA) [23]. The SIFT [21] has excellent noise immunity, il-
lumination, partial occlusion and geometric transformation
robustness. The LBP [22] uses a local neighborhood around
each pixel, thresholds the pixels of the neighborhood to the
value of the central pixel, and uses the resulting binary

IEEE TRANSACTIONS ON MOBILE COMPUTING 3

Fig. 2. The proposed framework overview.

image block as the local image descriptor. The PCA [23]
preserves global information of the image data. However,
they aim to preserve the intrinsic structure of the image
data, rather than extracting discriminative features. To ad-
dress this problem, numerous algorithms have been pro-
posed [24]–[27]. For example, joint global and local struc-
ture discriminant analysis [25] generates the extractor by
integrating global and local geometrical structures into the
objective function of linear discriminant analysis. Locality
adaptive discriminant analysis [27] generates the extractor
by investigating the geometry of the local data structure.
However, they do not consider the distance gap between
the inter-class structure and intra-class structure, and ignore
the importance of the two structures when generating the
extractor. This affects the ability of the extractor they gener-
ate to extract discriminative features.

There are also a lot of mobile image recognition ap-
proaches based on mobile edge computing [18]–[20], [28],
[29]. For instance, Li et al. [18] propose an online decision
approach for determining the level of pre-processing on
mobile devices. Liu et al. [28] propose a deep learning-
based food recognition system for dietary assessment in
the edge computing service infrastructure. Hu et al. [19]
propose a resolution framework based on fog computing,
which transfers some computing overhead from the cloud
to network edge devices to improve processing efficiency
and reduce network transmission. Drolia et al. [20] propose
a system that uses offline analysis of applications and online
estimation of network conditions to adaptive balance the
load between the edge and the cloud, thereby minimizing
latency. Soyata et al. [29] study how to perform task division
from mobile devices to the cloud in order to minimize
response time given various communication delays and
server computing power. These approaches benefit from the
mobile edge computing architecture in terms of network
traffic and response time. However, they do not consider
the impact of dynamic changes in mobile device resources
on applications.

3 DETAILED DESIGN OF PROPOSED FRAMEWORK

3.1 Overview
Fig. 2 illustrates the architecture of the proposed framework,
which is split into an offline stage and an online stage.

In the offline stage, we first develop the DEF algorithm
to generate the extractor E. Then, we develop the NestDFE
algorithm to divide E into multiple sub-extractors and form
these sub-extractors into a single multi-capacity extractor.

we use the multi-capacity extractor to extract discriminative
features from the image data set and form multiple feature
sets. In addition, we send the multi-capacity extractor to the
mobile device. Because E has explored the distribution of
the discriminative features of the image data set, and E is
equivalent to the multi-capacity extractor, the multi-capacity
extractor can extract discriminative features. Although the
size of the multi-capacity extractor is larger than the size of
the extracted features, the proposed framework can reduce
network traffic. This is because mobile users can frequently
use the multi-capacity extractor to extract discriminative
features. Note that, E′s update and NestDFE’s operation
are both offline.

In the online stage, after capturing an image, the mobile
device first pre-processes it. For instance, performing the
objection detection algorithm (e.g., histograms of oriented
gradient [30]) to obtain objects, graying the obtained objects,
and aligning the dimension of the object to the dimension
of E. Then, the mobile device selects an appropriate sub-
extractor to extract discriminative features from the pre-
processed image data. Because a larger sub-extractor can
extract more effective discriminative features, thereby ob-
taining higher recognition accuracy. To achieve the highest
recognition accuracy in the current situation, the mobile
device should select the maximum capacity sub-extractor
it can currently support. Thus, the mobile device can dy-
namically select appropriate sub-extractors to extract dis-
criminative features based on its available resources. Next,
the mobile device uploads the extracted feature data to the
edge server. After receiving the feature data, the edge server
performs feature matching to obtain results and sends the
results back to the mobile user. It is worth noting that feature
matching can save a considerable amount of time because
the dimensions of the feature set are much lower than the
dimensions of the image data set.

3.2 DFE Algorithm

The goal of the DFE algorithm is to generate the extractor
E to extract effective discriminative features from the image
data set on the edge server and images on mobile devices.
However, we cannot test the performance of E directly on
images on the mobile device. Based on the empirical risk
minimization [31], we can measure the performance of E on
the image data set. One of the most important performance
metric of E is whether it can extract effective discriminative
features from the image data, which is reflected by the recog-
nition accuracy in this paper. If the extracted discriminative
features can be easily distinguished, it means that these
discriminative features are effective, and using them can
obtain higher recognition accuracy. Otherwise, the extracted
discriminative features are not effective, and using them
will obtain lower recognition accuracy. Following this idea,
we first design the DFE algorithm, which consists of two
phases:

3.2.1 Constructing intra-class and inter-class structures
The DFE algorithm should contain intra-class and inter-
class structures, as they all contribute to generating E.
Fig. 3 illustrates the intra-class and inter-class structures
and divides them into four types of substructures. The left

IEEE TRANSACTIONS ON MOBILE COMPUTING 4

Fig. 3. Illustration of intra-class and inter-class structures.

side of Fig. 3 illustrates that the intra-class structure contains
two types of substructures. One is the substructure between
the sample (e.g., blue triangles) and the center of samples
(e.g., the red triangle). The other is the substructure between
samples with the same label (e.g., blue cubes). The right side
of Fig. 3 illustrates that the inter-class structure also contains
two types of substructures. One is the substructure between
the sample centers (e.g., the red triangle, the red rectangle,
and the red cube). The other is the substructure between
samples with different labels (e.g., the blue triangle and blue
rectangles). However, most existing feature extraction algo-
rithms only contain a portion of these substructures [23],
[27], [32], [33], which affects the ability of the extractors they
generate to extract discriminative features.

To address this problem, the DFE algorithm includes all
of these substructures. In addition, it is not appropriate to
directly use the Euclidean Distance (EC) [34] to measure the
substructure information of image data. This is because, in
general, the EC between samples from the same class label
is small and the EC between samples from different class
labels is large. The distance gap between the two types of
samples leads to optimization difficulties. Inspired by the
idea of [35] that residual networks are easier to optimize,
we aim to narrow the distance gap between the two types
of samples by designing a similarity function. In addition,
the relationship between samples from the same class label
is more important for generating efficient extractors. There-
fore, we construct a novel similarity function to expand the
distance between samples from the same class label and
shrink the distance between samples from different class
labels. We define the similarity function as follows:

S(i, j) =

{
dn ∗ exp(dn + 1), yi = yj
dn ∗ exp(−dn − 1), yi 6= yj

, (1)

where dn = d(i,j)−d(i,j)min

d(i,j)max−d(i,j)min
, d(i, j) =

√∑d
l=1(x

l
i − xlj)

2.
d(i, j)min and d(i, j)max represent the minimum and max-
imum of the distance between samples xi and xj . We
normalize the distance between samples xi and xj because
their distances vary greatly and are difficult to optimize.

Fig. 4 illustrates the similarity function. As shown, the
zoom range for these two types of distance is different.
Specifically, the similarity function expands the distance
between samples from the same class label to [0, e2] and
shrinks the distance between samples from different class
labels to [0, 1]. Thus, we can easily optimize them. Based on

d

0 0.2 0.4 0.6 0.8 1

S
(i
,j
)

0

1

2

4

6

8

yi = yj
yi 6= yj

Fig. 4. The similarity function.

the similarity function and Fig. 3, we define and quantify
these substructures as follows:

The global intra-class substructure represents the struc-
ture between samples and the sample center of the same
class label. It is quantified as follows:

Ogw=

K∑
k=1

Nk∑
i=1

ET(xk
i −

1

Nk

Nk∑
i=1

xi)(x
k
i −

1

Nk

Nk∑
i=1

xi)
TE, (2)

whereNk indicates the number of samples whose class label
is k. xki is the i-th sample in class k.

The local intra-class substructure represents the structure
between samples with the same class label. It is quantified
as follows:

Olw=

N∑
ij

||ETxi−ETxj ||2Ww
ij , (3)

where Ww
ij = S(i, j), if and only if i ∈ fwk1(j) or j ∈ fwk1(i);

otherwise, Ww
ij = 0. fwk1(i) is calculated by Eq. (1) and is the

index set of the k1 nearest neighbors of sample xi with the
same class label.

The global inter-class substructure represents the struc-
ture between the center sample of each class of sample and
the center sample of all samples. It is quantified as follows:

Ogb=

K∑
k=1

NkET(
1

Nk

Nk∑
i=1

xi−
1

N

N∑
i=1

xi)(
1

Nk

Nk∑
i=1

xi−
1

N

N∑
i=1

xi)
TE.

(4)
The local inter-class substructure represents the structure

between samples with different class labels. It is quantified
as follows:

Olb=

N∑
ij

||ETxi−ETxj ||2W b
ij , (5)

where W b
ij = S(i, j), if and only if i ∈ fbk2(j) or j ∈ fbk2(i);

otherwise W b
ij = 0. fbk2(i) is calculated by Eq. (1) and is the

index set of k2 nearest neighbors of sample xi with different
class labels.

IEEE TRANSACTIONS ON MOBILE COMPUTING 5

3.2.2 Optimization
In order for the extractor E to extract effective discrimina-
tive features, we minimize Ogw and Olw, and maximize
Ogb and Olb. The purpose of minimizing Ogw and Olw is
to make the distance between the discriminative features
extracted from the images of the same class close. The
purpose of maximizing Ogb and Olb is to make the distance
between the discriminative features extracted from the im-
ages of different classes far. By simultaneously minimizing
the intra-class substructures and maximizing the inter-class
substructures, we can obtain discriminative features that are
easily distinguishable.

However, the contribution of different substructures may
be quite different to generate the extractor when dealing
with different image data sets. To circumvent this problem,
we introduce three trade-off parameters α, β and γ to
control the importance between Ogw and Olw, Ogb and Olb,
and αOgw+(1−α)Olw and βOgb+(1−β)Olb, respectively. We
define the objective function as follows:

FDFE = max
E
{γ[βOgb + (1− β)Olb]

− (1− γ)[αOgw + (1− α)Olw]}
s.t. ETE=I

, (6)

where α, β, γ ∈ [0, 1]. To gain more insight, Eq. (6) can be
rewritten as:

ODFE=arg max
E

tr(ETΦE) s.t. ETE=I, (7)

where

Φ = γβ

c∑
k=1

Nk∑
i=1

(xk
i −

1

Nk

Nk∑
i=1

xi)(x
k
i −

1

Nk

Nk∑
i=1

xi)
T−(1−γ)

α

c∑
k=1

Nk(
1

Nk

Nk∑
i=1

xi−
1

N

N∑
i=1

xi)(
1

Nk

Nk∑
i=1

xi−
1

N

N∑
i=1

xi)
T

+

N∑
ij

(xi−xj)(xi−xj)
T [γ(1−β)W b

ij−(1−α)(1−γ)Ww
ij]

.

(8)
The extractor E can extract effective discriminative fea-

tures because the DFE algorithm includes all substructures
and adapts each substructure by introducing three trade-off
parameters. In addition, the E is easy to be generated be-
cause the DFE algorithm narrows the distance gap between
the two types of samples, as shown in Eq. (8).

Based on [32], [36], we switch Eq. (7) to a simple eigen-
value and eigenvector problem for matrix Φ. Based on
the Lagrange multiplier [37], Eq. (7) forms the Lagrangian
function: ζ(E,Λ) = tr(ETΦE)− tr(Λ(ETE− I)), where
Λ=[λ1, . . . , λn]. We have Φei=λiei by setting ∂ζ(E,Λ)

∂E = 0.
Thus, Eq. (7) can be rewritten as:

ODFE=arg max
ei

d∑
i=1

eTi Φei =arg max
ei

d∑
i=1

λi. (9)

From Eq. (8), Φ is a non-positive real symmetric matrix
and its eigenvalues can be positive, zero, or negative. To
optimize Eq. (9), we choose all positive eigenvalues of Φ.
Assuming that the number of positive eigenvalues of Φ is r,
the solution of Eq. (7) is E=[e1, · · · , er].

The extractor E consists of the eigenvectors correspond-
ing to the top r positive eigenvalues of Φ. Fig. 5 and Fig. 6

The number of features

0 200 400 600 800 1000 1200

R
e

c
o

g
n

it
io

n
 a

c
c
u

ra
c
y

0.2

0.4

0.6

0.8

1

(a)

The serial number of eigenvalues

0 200 400 600 800 1,000 1,200

E
ig

e
n

v
a

lu
e

-2

0

2

4

6

8

10

0 10 20 30
0

5

10

(b)

Fig. 5. Relationship between recognition accuracy, number of eigenvec-
tors and eigenvalues on the COIL20 data set.

The number of features

0 200 400 600 800 1000 1200

R
e

c
o

g
n

it
io

n
 a

c
c
u

ra
c
y

0.4

0.6

0.8

1

(a)

The serial number of eigenvalues

0 200 400 600 800 1,000 1,200

E
ig

e
n

v
a

lu
e

×10
7

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 10 20 30

×10
5

0

5

10

(b)

Fig. 6. Relationship between recognition accuracy, number of eigenvec-
tors and eigenvalues on the UMIST data set.

illustrate the relationship between recognition accuracy,
number of eigenvectors and eigenvalues on COIL20 and
UMIST data sets. As shown, when E consists of eigenvectors
corresponding to the r top positive eigenvalues, the DFE
algorithm achieves the highest recognition accuracy. This
indicates that E can extract effective discriminative features.
However, the recognition accuracy of the DFE algorithm
tends to be stable or even decreased when the eigenvectors
corresponding to the zero or negative eigenvalues are se-
lected. Hence, the dimension of E can be estimated as being
equal to the number of positive eigenvalues of Φ.

In addition, Fig. 5 and Fig. 6 indicate that there are only
a few positive eigenvalues. This means that the dimension
of E is low because it only consists of eigenvectors cor-
responding to positive eigenvalues. Hence, the E extracts
a few discriminative features from the image data set on
the edge server and images on the mobile device. This has
two advantages: (i) Network traffic is reduced because the
mobile device only needs to upload a small amount of
feature data to the edge server. (ii) Feature matching time
is reduced because we only need to match a small number
of discriminative features. In addition, the DFE algorithm
saves a lot of manpower costs because it estimates the
optimal dimension of the feature set.

3.3 NestDFE Algorithm
In real-world scenarios, the amount of available resources of
the mobile device dynamically changes because the mobile
device typically runs multiple applications simultaneously,
and the mobile user may frequently launch new applications
and close existing ones. Note that, the available resources
are RAM resources, and we can use some tools (e.g., mem-
orymoniter) to easily measure the currently available re-
sources of mobile devices. If, for a period of time, the mobile

IEEE TRANSACTIONS ON MOBILE COMPUTING 6

Fig. 7. Illustration of the multi-capacity extractor switching. The order of
the capacity of these sub-extractors are Ei < Ek < Ej .

device does not have sufficient resources to support the
extractor operation, the extractor E cannot work and cause
the mobile image recognition application to be inoperable,
thereby affecting the user experience.

As introduced in Section 3.2, the optimal extractor E
consists of [e1, · · · , er]. Inspired by this, a straightforward
solution is to divide the extractor E into multiple possible
sub-extractors and store all these sub-extractors. For exam-
ple, we divide extractor E into a series of sub-extractors,
such as E1 = [e1], E2 = [e1, e2], E3 = [e1, e2, e3], · · · ,
Er = [e1, e2, · · · , er], and store them on the mobile de-
vice. Then, we deploy the memorymoniter to monitor the
currently available resources of mobile devices and map
each sub-extractor to the resources it needs. Therefore,
the mobile device can dynamically select appropriate sub-
extractor based on its available resources. Note that since the
image has been pre-processed when using the extractor to
extract discriminative features, the RAM resources required
to extract features are only related to the capacity of the ex-
tractor. We can use the detection tools offline to measure the
RAM resources required by each extractor. In addition, since
Section 3.2 reveals the relationship between the number of
discriminative features and the recognition accuracy, we can
obtain the relationship between the required resources and
the recognition accuracy. Therefore, we can use a table to
record the mapping between each extractor, the required
RAM resources, and the recognition accuracy.

However, it is not wise to store all of these sub-extractors
because they take up a considerable amount of memory
space. In addition, running multiple extractor operations
on the mobile device may cause a considerable amount
of switching overhead because the mobile device needs to
switch the entire sub-extractor. For example, assume that
the mobile image application continues to use E2 to extract
discriminative features. If a new application with a higher
priority is suddenly launched, the available resources of the
mobile device may no longer meet the needs of E2. In order
to accommodate the available resources, the mobile device
needs to page out E2 and page in E1.

To circumvent this problem, we propose a NestDFE
algorithm for generating a single multi-capacity extractor
that is equivalent to storing all sub-extractors. As analyzed
above, these sub-extractors are not independent and the
sub-extractor with a smaller capacity shares all its param-
eters to the sub-extractor with a larger capacity, i.e., Ei⊂Ej ,
where 1 ≤ i < k < j ≤ r. Thus, the sub-extractor Ei

can nest itself within the sub-extractor Ej without occu-
pying additional memory space. Inspired by this, in the
NestDFE algorithm, the extractor E is divided into r sub-

extractors, i.e., E1 = [e1], E2 = [e1, e2], E3 = [e1, e2, e3],
· · · , Er = [e1, e2, · · · , er]. Then, the NestDFE enables the
sub-extractors with smaller capacity to be nested into the
sub-extractors with larger capacity. Therefore, we only need
to store Er on the mobile device. This is because all other
sub-extractors are nested in Er . Er plays the role of the
multi-capacity extractor, which can realize all the functions
of other sub-extractors.

Each sub-extractor nested in Er can extract different
numbers of discriminative features, so as to obtain the
corresponding recognition accuracy. When selecting a sub-
extractor with a larger capacity, we can use it to extract more
effective discriminative features, and more discriminative
features mean higher recognition accuracy. Therefore, the
highest recognition accuracy in the current situation can be
obtained by selecting the maximum capacity sub-extractor
that the mobile device’s currently available resource can
support. When capturing an image, the mobile device first
pre-processes it. Then, the mobile device selects the max-
imum capacity sub-extractor that can be supported by its
currently available resources to extract discriminative fea-
tures from the pre-processed image data. Follow that, the
mobile device uploads the extracted feature data to the edge
server to perform feature matching. Finally, the edge server
sends the results back to the mobile user.

As shown in Fig. 7, it is assumed that the mobile image
application uses extractor Ek to extract discriminative fea-
tures. At some point, the available resources of the mobile
device may not be able to meet the needs of extractor
Ek because of the launch of some new applications with
higher priority. The mobile device has to switch Ek to Ei to
adapt its available resources. Thus, the mobile device incurs
zero page-in overhead, and only needs to page out the
parameters that Ei does not have (marked as gray squares).
On the contrary, at some point, the available resources of
the mobile device are enough because some applications
are closed. The mobile device can switch Ek to Ej . Thus,
the mobile device incurs zero page-out overhead, and only
needs to page in the parameters included in Ej (marked
as green squares). Assume that the number of parameters
of Ei is P (Ei), and the number of parameters of Ej is
P (Ej). When switching from the smallest-capacity sub-
extractor (e.g., Ei) to the largest-capacity sub-extractor (e.g.,
Ej), the upper-bound of the overhead of page-in parameters
is P (Ej)−P (Ei), and the overhead of page-out parameters
is 0. When switching from Ej to Ei, the upper-bound of the
overhead of page-out parameters is P (Ej)−P (Ei), and the
overhead of page-in parameters is 0. Compared with page-
in and page-out the entire sub-extractor, the multi-capacity
extractor reduces the overhead of page-in and page-out sub-
extractors. In addition, since the size of the multi-capacity
extractor is smaller than the size of the accumulated sub-
extractors, the former saves a lot of memory space.

In summary, by using E to extract discriminative fea-
tures and deploying the multi-capacity extractor on the
mobile device, the proposed framework can achieve higher
recognition accuracy and shorter feature matching time,
generate less network traffic and consume less memory
space. In addition, the proposed framework can be gener-
alized to support many other feature extraction algorithms,
such as joint global and local structure discriminant analy-

IEEE TRANSACTIONS ON MOBILE COMPUTING 7

TABLE 1
Description of benchmark data sets.

Data Sets # Images # Dimensions # Classes

COIL20 1440 1024 20

UMIST 564 1024 20

YALE 165 1024 15

ORL 400 1024 40

USPS 1854 256 10

sis [25] and locality adaptive discriminant analysis [27].

4 EVALUATION

4.1 Experimental Setup

We conduct experiments on five benchmark data sets:
COIL20 [38], UMIST [39], YALE [40], ORL [41], USPS [42].
Table 1 lists the details used in the experiment.

We compare the DFE algorithm with four algorithms,
which represent the best performing algorithms currently in
use. They are: local binary pattern (LBP) [22], principle com-
ponent analysis (PCA) [23], joint global and local structure
discriminant analysis (JGLDA) [25], and locality adaptive
discriminant analysis (LADA) [27]. In addition, we evaluate
the PCA in the case of edge guidance, namely EG-PCA. That
is, we first perform the PCA on the training set to generate
the extractor on the edge server. Then, we send the extractor
to mobile device to extract features from the test set.

For our DFE algorithm, the trade-off parameters α, β
and γ can be tuned as follows. Because α, β and γ all need
to be tuned, we fix two of them to tune the remaining one.
For instance, when tuning α, we first fix β and γ and set
β = γ = 0.5. After obtaining α (assuming α=0.1), we fix α
and γ and set α=0.1 and γ=0.5 to tune β. After obtaining
β (assuming β = 0.9), we fix α and β and set α=0.1 and
β=0.9 to tune γ. To maintain the recognition accuracy of LBP
and PCA, we extract 128 features for LBP and extract 100
features for PCA. For DFE and JGLDA, we set k1 = k2 = 1
to preserve local intra-class and inter-class structures. In
addition, we determine the number of features of JGLDA
and LADA based on their recognition accuracy. That is, we
first calculate all the recognition accuracy corresponding to
their feature values. Then, we select the number of features
with the highest recognition accuracy as the best dimension
of the extractor. For our DFE algorithm, we choose the
number of positive eigenvalues as the dimension of the
extractor.

We randomly split the COIL20 data set at the ratio of 1:1
to form a training set and a test set. That is, the COIL20 data
set contains 1440 images, we randomly select 720 images
as the training set (36 images per class), and the remaining
720 images are used as the test set. We randomly split the
UMIST and ORL data sets at the ratio of 3:2 to form the
training set and the test set, and randomly split the YALE
and USPS data sets at the ratio of 9:1 to form the training
set and the test set. Finally, we use the nearest neighbor
classifier to evaluate all algorithms and report the result of
20 averages .

4.2 System Implementation
We implement a prototype system. The experimental en-
vironment consists of two components: mobile device and
mobile edge computing platform. A Huawei Honor 8 smart-
phone is regarded as the mobile device. The mobile edge
computing platform consists of a base station and three edge
servers, e.g., edge server A, edge server B and edge server
C. Note that edge server A, B and C are three desktops. The
edge server A is responsible for providing computing and
memory resources. The base station is based on the Open
Air Interface (OAI) [43], and is responsible for communi-
cating with the mobile device. The base station consists of
three components: radio-frequency signal generator, edge
server B, and edge server C. The radio-frequency signal
generator is equipped with USRP-B210. The edge server B
is responsible for running the eNodeB. The radio-frequency
signal generator and edge server B are connected via USB
3.0. The edge server C is responsible for running Home
Subscriber Service (HSS), Mobility Management (MME),
Serving Gateway (SGW), and Packet data network Gateway
(PGW) [43]. The upload link rate of mobile devices connect
to mobile edge computing platform is 1000 KB/s and its
download link rate is 1.36 MB/s. Note that, the base station
is next to the edge server.

We take the COIL20 data set as an example, and the sys-
tem flow is: we first use the DFE algorithm to generate the
extractor E on the edge server. Then, we run the NestDFE
algorithm to turn E into a single multi-capacity extractor.
Follow that, we use the single multi-capacity extractor to
extract discriminative features from the COIL20 data set and
form a discriminative feature set named DF-COIL20. Then,
the edge server sends the single multi-capacity extractor to
the mobile device. When capturing an image, the mobile
device first pre-processes it and then selects an appropriate
sub-extractor to extract discriminative features. Follow that,
the mobile device uploads the extracted discriminative fea-
ture data to the edge server. Then, the edge server matches
it with the DF-COIL20 and chooses the most similar feature
data and returns its label. Finally, the edge server returns
the label data back to the mobile device.

4.3 Experimental Results
We evaluate the proposed framework from the aspects of
recognition accuracy, network traffic, feature matching time,
memory space, and switching overhead. Recognition accu-
racy and network traffic are two commonly used indicators.
Feature matching time affects the response time of mobile
image recognition applications. Memory space and switch-
ing overhead affect the resource usage of mobile devices.

4.3.1 Recognition Accuracy
Our DFE algorithm outperforms other algorithms on all
data sets. As shown in Table 2, on the YALE data set,
DFE improves recognition accuracy by 22.65% compared
with LBP; compared with LADA, DFE improves recogni-
tion accuracy by 2.2%. The reason is that DFE can extract
effective discriminative features. It is worth noting that the
recognition accuracy of LADA and JGLDA is higher than
that of LBP and EG-PCA. This is because LBP and EG-PCA
extract numerous features to preserve the intrinsic structure

IEEE TRANSACTIONS ON MOBILE COMPUTING 8

TABLE 2
Recognition accuracy of different algorithms on different data sets.

COIL20 UMIST YALE ORL USPS

LBP 95.56 97.75 70.67 90.63 83.52

PCA 59.00 54.03 22.20 59.58 65.93

EG-PCA 96.67 98.12 86.67 90.80 85.71

JGLDA 98.61 98.20 90.67 91.87 87.91

LADA 97.64 98.65 91.12 95.00 89.56

DFE 99.31 99.55 93.32 96.25 93.96

of the image data, rather than extracting discriminative fea-
tures. However, LADA and JGLDA extract discriminative
features. In addition, our algorithm has a higher recognition
accuracy than JGLDA and LADA. This is because our algo-
rithm uses the similarity function to construct substructures
and controls these substructures reasonably. Therefore, our
algorithm can achieve the highest recognition accuracy.

It is important to use the image data set to guide the
feature extraction of images. As shown in Table 2, on all data
sets, the recognition accuracy of EG-PCA is higher than that
of PCA. For example, the recognition accuracy of EG-PCA
on the COIL20 and USPS data sets is 37.67% and 19.78%
higher than that of PCA, respectively. This is because the
extractor generated by EG-PCA explores the distribution of
the features of the image data set. When using the extractor,
it is easy to extract useful features. However, when using
PCA, the extracted features from the image data set and
images are separate, and it is difficult to extract features that
are useful for recognition tasks. Hence, EG-PCA achieves
higher recognition accuracy. In addition, it indicates that the
guidance of the image data set is important.

In most cases, the recognition accuracy of JGLDA is
lower than that of LADA. As shown in Table 2, on the ORL
data set, JGLDA’s recognition accuracy is 3.13% lower than
LADA’s recognition accuracy. Although the JGLDA consists
of all substructures, its recognition accuracy is lower than
that of the LADA. This is because the JGLDA cannot rea-
sonably control the contribution of each substructure when
generating the extractor. Thus, some features that are detri-
mental to recognition tasks are also extracted and result in
low recognition accuracy. This indicates that proper control
of each substructure is important to generate the extractor
to extract effective discriminative features.

4.3.2 Network Traffic
Our algorithm has minimal network traffic in all data sets.
Fig. 8 shows that on the YALE data set, the DFE reduces
network traffic by 76.09% compared with LBP. The reason is
that the DFE can extract fewer and effective discriminative
features. Hence, when using the DFE to extract discrimi-
native features from images, the mobile device generates
a small amount of network traffic. This also indicates that
under the guidance of the edge, the mobile device generates
less network traffic.

LADA and JGLDA have less network traffic than LBP
and PCA. Fig. 8 shows that on the COIL20 data set, LADA
reduces network traffic by 42.71% compared with LBP, and
LADA reduces network traffic by 30.96% compared with

Image data sets

COIL20 UMIST YALE ORL USPS

N
e
tw

o
rk

 t
ra

ff
ic

 (
K

B
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
LBP PCA JGLDA LADA DFE

Fig. 8. Network traffic for different algorithms.

Number of test images

10% 20% 30% 40% 50%

M
a

tc
h

in
g

 t
im

e
 (

s
)

0

0.5

1

1.5

2

2.5
LBP

PCA

JGLDA

LADA

DFE

(a) The COIL20 data set

Number of test images

10% 20% 30% 40% 50%

M
a

tc
h

in
g

 t
im

e
 (

s
)

0

0.5

1

1.5
LBP

PCA

JGLDA

LADA

DFE

(b) The USPS data set

Fig. 9. Matching time for different number of images.

PCA. The reason is that LBP and PCA extract numerous
features to preserve the intrinsic structure of the image data.
However, our algorithm, LADA, and JGLDA extract fewer
discriminative features, thereby consuming less network
traffic.

4.3.3 Feature Matching Time
Our DFE has the least feature matching time. This is because
the DFE extracts a small number of features (as analyzed
in Section 4.3.2). Therefore, with the same number of im-
ages, fewer features lead to less feature matching time. As
shown in Fig. 9. In addition, LADA and JGLDA have less
feature matching time than LBP and PCA. The reason is
that LBP and PCA extract numerous features. The number
of extracted discriminative features of LADA and JGLDA is
less than the number of features extracted by LBP and PCA.
Hence, LADA and JGLDA have less feature matching time.

4.3.4 Reduction on Memory Space
We divide the extractor of each data set into multiple
sub-extractors based on the size of the extractor and the
corresponding recognition accuracy, as shown in Table 3. In
addition, COIL20∗ indicates that we divide the extractor on
the COIL20 data set into all possible sub-extractors. We have
the following observations.

The size of the multi-capacity extractor is smaller than
the size of the accumulated extractors for each data set.
As illustrated in Table 4, compared with the accumulated
extractors, the multi-capacity extractor reduces memory
space by 48.72% and 69.58% in the COIL20 and ORL data

IEEE TRANSACTIONS ON MOBILE COMPUTING 9

TABLE 3
Sub-extractors of each data set. (num, vec, si, acc) denotes a

sub-extractor, where num, vec, si, and acc represent the sequence
number, feature number, size, and recognition accuracy.

Data Sets Multiple Sub-extractors

COIL20
(1, 1:3, 23.2KB, 0.879); (2, 1:6, 46.2KB, 0.957)

(3, 1:9, 69.3KB, 0.991); (4, 1:19, 146KB, 0.992)

COIL20∗

(1, 1:1, 7.87KB, 0.256); (2, 1:2,15.5KB, 0.689)

(3, 1:3, 23.2KB, 0.879); (4, 1:4, 30.8KB, 0.921)

(5, 1:5, 38.5KB, 0.941); (6, 1:6, 46.2KB, 0.957)

(7, 1:7, 53.9KB, 0.963); (8, 1:8, 61.6KB, 0.964)

(9, 1:9, 69.3KB, 0.991); (10, 1:19, 146KB, 0.992)

UMIST

(1, 1:3, 23.2KB, 0.9045); (2, 1:6, 46.2KB, 0.9851)

(3, 1:9, 69.3KB, 0.9881); (4, 1:12, 92.3KB, 0.991)

(5, 1:15, 115KB, 0.997)

YALE
(1, 1:3, 23.2KB, 0.4889); (2, 1:6, 46.3KB, 0.7111)

(3, 1:9, 69.3KB, 0.8222); (4, 1:12, 92.4KB, 0.9333)

ORL

(1, 1:5, 38.6KB, 0.85); (2, 1:10, 77KB, 0.9458)

(3, 1:15, 118KB, 0.95); (4, 1:20, 153KB, 0.956)

(5, 1:22, 169KB, 0.9667)

USPS

(1, 1:5, 9.8KB, 0.7857); (2, 1:10, 19.4KB, 0.9066)

(3, 1:15, 29KB, 0.9231); (4, 1:20, 38.6KB, 0.9341)

(5, 1:30, 57.9KB, 0.9560)

TABLE 4
Multi-capacity and accumulated extractors on memory space reduction.

Data Sets
Multi-capacity

Extractor Size (KB)

Accumulated

Extractor Size (KB)

Reduced Memory

Space

COIL20 146 284.7 48.72%

COIL20∗ 146 492.77 70.37%

UMIST 115 346 66.76%

YALE 92.4 231.2 60.03%

ORL 169 555.6 69.58%

USPS 57.9 154.7 62.57%

sets, respectively. The reason is that in the multi-capacity
extractor, the sub-extractor having a smaller capacity is
nested in the sub-extractor having a larger capacity. Thus,
the sub-extractor having a larger capacity shares memory
space with the sub-extractor having a smaller capacity, and
the size of the multi-capacity extractor is equal to the size
of the sub-extractor having a larger capacity. However, the
size of accumulated extractors is equal to the sum of the
size of each extractor. Hence, the size of the multi-capacity
extractor is much smaller.

The multi-capacity extractor saves more memory space
when the optimal extractor divides more sub-extractors. As
shown in Table 4, the memory space of the multi-capacity
is reduced by 70.37% in the COIL20∗. This is because,
in the multi-capacity extractor, each sub-extractor is not
independent. The size of all sub-extractors is equal to the
single multi-capacity extractor. However, the size of these
accumulated sub-extractors is larger because there are mul-
tiple sub-extractors and their memory space is independent.

TABLE 5
Multi-capacity and independent extractors on extractor switching

(extractor upgrade) in terms of memory usage.

Data Sets
Multi-capacity Extractor

Upgrade Overhead (KB)

Independent Extractor

Upgrade Overhead (KB)

Page-in Page-out Page-in Page-out

COIL20 122.8 0 146 23.2

COIL20∗ 7.7 0 69.3 61.6

UMIST 91.8 0 115 23.2

YALE 69.2 0 92.4 23.2

ORL 130.4 0 169 38.6

USPS 48.1 0 57.9 9.8

TABLE 6
Multi-capacity and independent extractors on extractor switching

(extractor downgrade) in terms of memory usage.

Data Sets
Multi-capacity Extractor

Downgrade Overhead (KB)

Independent Extractor

Downgrade Overhead (KB)

Page-in Page-out Page-in Page-out

COIL20 0 122.8 23.2 146

COIL20∗ 0 7.7 61.6 69.3

UMIST 0 91.8 23.2 115

YALE 0 69.2 23.2 92.4

ORL 0 130.4 38.6 169

USPS 0 48 9.8 57.8

4.3.5 Reduction on Switching Overhead

The average page-in and page-out memory usage of the
multi-capacity extractor is less than independent extrac-
tors for each data set during extractor switching. Table 5
shows that on the COIL20 data set, when upgrading the
sub-extractor, the multi-capacity extractor needs to page
in 122.8KB and page out 0KB parameters. However, the
independent sub-extractor needs to page in 146KB and page
out 23.2KB parameters. Similar, Table 6 shows that on the
COIL20 data set, when downgrading the sub-extractor, the
multi-capacity extractor needs to page in 0KB and page
out 122.8KB parameters. The independent extractor needs
to page in 23.2KB and page out 146KB parameters. This is
because during the extractor upgrade, the multi-capacity
extractor only needs to page in the parameters included
in the sub-extractor having a larger capacity. In addition,
the multi-capacity extractor does not need to page out
parameters because the parameters are used by the next
sub-extractor. When the extractor is downgraded, the multi-
capacity extractor only needs to page out the extra parame-
ters that the sub-extractor with a smaller capacity does not
have. Whether the extractor is upgrading or downgrading,
the independent extractor needs to page in and page out
the entire sub-extractor. Therefore, the multi-capacity can
reduce the switching overhead.

The multi-capacity extractor saves more switching over-
head when the extractor divides more sub-extractors. As
shown in Table 5 and Table 6, when upgrading the extractor,
the multi-capacity extractor only needs to page in 7.7KB
parameters. When downgrading the extractor, the multi-

IEEE TRANSACTIONS ON MOBILE COMPUTING 10

capacity extractor only needs to page out 7.7KB parameters.
This is because when the the optimal extractor is divided
into multiple sub-extractors, the adjacent sub-extractors
have similar sizes. When upgrading or downgrading adja-
cent sub-extractors, the multi-capacity extractor only needs
to page in and page out a few parameters. However, the
independent extractor needs to page in and page out entire
sub-extractors. Therefore, the independent extractor con-
sumes more switching overhead. In addition, the multi-
capacity extractor can save more switching overhead as the
extractor switching frequency increases.

5 CONCLUSION

In this paper, we mainly make the following three contri-
butions. First, we propose a resource-aware feature extrac-
tion framework. Second, we propose the DFE algorithm to
generate the extractor to extract effective discriminative fea-
tures. Third, we propose the NestDFE algorithm, which gen-
erates a single multi-capacity extractor that works equally
well with a serials of sub-extractors. Experimental results
show that the proposed framework outperforms several
state-of-the-art algorithms in terms of recognition accuracy,
network traffic, memory space and switching overhead.

In future work, we will study the frequency of updating
the extractor. The extractor is important because it affects
the recognition accuracy and network traffic of the proposed
framework. Since the extractor is related to the amount of
training data, we plan to study the relationship between
the amount of training data and recognition accuracy to
determine how often the extractor is updated.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (61922017, 61902036), and the Funds
for Creative Research Groups of China (61921003).

REFERENCES

[1] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “Deepcache: Principled
cache for mobile deep vision,” in Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking, 2018,
pp. 129–144.

[2] L. Xie, J. Sun, Q. Cai, C. Wang, J. Wu, and S. Lu, “Tell me what i
see: Recognize rfid tagged objects in augmented reality systems,”
in Proceedings of the ACM International Joint Conference on Pervasive
and Ubiquitous Computing, 2016, pp. 916–927.

[3] B. Fang, X. Zeng, and M. Zhang, “Nestdnn: Resource-aware multi-
tenant on-device deep learning for continuous mobile vision,” in
Proceedings of the ACM International Conference on Mobile Computing
and Networking, 2018, pp. 115–127.

[4] Y. Chen, J. Sun, X. Jin, T. Li, R. Zhang, and Y. Zhang, “Your
face your heart: secure mobile face authentication with photo-
plethysmograms,” in Proceeding of the IEEE Conference on Computer
Communications, 2017, pp. 1–9.

[5] W. Xu, Y. Shen, N. Bergmann, and W. Hu, “Sensor-assisted multi-
view face recognition system on smart glass,” IEEE Transactions on
Mobile Computing, vol. 17, no. 1, pp. 197–210, 2018.

[6] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud
with computing access point,” in Proceedings of the IEEE Conference
on Computer Communications, 2017, pp. 1–9.

[7] Z. Guan and T. Melodia, “The value of cooperation: Minimizing
user costs in multi-broker mobile cloud computing networks,”
IEEE Transactions on Cloud Computing, vol. 5, no. 4, pp. 780–791,
2017.

[8] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy-efficient dy-
namic computation offloading and cooperative task scheduling in
mobile cloud computing,” IEEE Transactions on Mobile Computing,
vol. 18, no. 2, pp. 319–333, 2019.

[9] K.-C. Wu, W.-Y. Liu, and S.-Y. Wu, “Dynamic deployment and
cost-sensitive provisioning for elastic mobile cloud services,” IEEE
Transactions on Mobile Computing, vol. 17, no. 6, pp. 1326–1338,
2018.

[10] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2018.

[11] L. Yang, H. Zhang, X. Li, H. Ji, and V. C. M. Leung, “A distributed
computation offloading strategy in small-cell networks integrated
with mobile edge computing,” IEEE/ACM Transactions on Network-
ing, vol. 26, no. 6, pp. 2762–2773, 2018.

[12] L. Jiao, L. Pu, L. Wang, X. Lin, and J. Li, “Multiple granularity on-
line control of cloudlet networks for edge computing,” in Proceed-
ings of the IEEE International Conference on Sensing, Communication,
and Networking, 2018, pp. 406–414.

[13] M. Ma, L. Zhang, J. Liu, Z. Wang, H. Pang, L. Sun, W. Li, G. Hou,
and K. Chu, “Characterizing user behaviors in mobile personal
livecast: Towards an edge computing-assisted paradigm,” ACM
Transactions on Multimedia Computing, Communications and Applica-
tion, vol. 14, no. 3s, pp. 1–24, 2018.

[14] T. X. Tran and D. Pompili, “Joint task offloading and resource
allocation for multi-server mobile-edge computing networks,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 856–
868, 2019.

[15] H. Wang, B. Kim, J. Xie, and Z. Han, “E-auto: A communication
scheme for connected vehicles with edge-assisted autonomous
driving,” in Proceedings of the IEEE International Conference on
Communications, 2019, pp. 1–6.

[16] C. Long, Y. Cao, T. Jiang, and Q. Zhang, “Edge computing frame-
work for cooperative video processing in multimedia iot systems,”
IEEE Transactions on Multimedia, vol. 20, no. 5, pp. 1126–1139, 2018.

[17] M. Li, F. R. Yu, P. Si, and Y. Zhang, “Energy-efficient machine-to-
machine (m2m) communications in virtualized cellular networks
with mobile edge computing (mec),” IEEE Transactions on Mobile
Computing, vol. 18, no. 7, pp. 1541–1555, 2019.

[18] J. Li, Z. Peng, B. Xiao, and Y. Hua, “Make smartphones last a day:
Pre-processing based computer vision application offloading,” in
Proceedings of the IEEE International Conference on Sensing, Commu-
nication, and Networking, 2015, pp. 462–470.

[19] P. Hu, H. Ning, T. Qiu, Y. Zhang, and X. Luo, “Fog computing
based face identification and resolution scheme in internet of
things,” IEEE Transactions on Industrial Informatics, vol. 13, no. 4,
pp. 1910–1920, 2017.

[20] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier:
Edge-caching for recognition applications,” in Proceedings of the
IEEE International Conference on Distributed Computing Systems,
2017, pp. 276–286.

[21] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, 2004.

[22] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-
scale and rotation invariant texture classification with local binary
patterns,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 24, no. 7, pp. 971–987, 2002.

[23] A. M. Martinez and A. C. Kak, “Pca versus lda,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 23, no. 2, pp. 228–
233, 2001.

[24] M. Sugiyama, “Dimensionality reduction of multimodal labeled
data by local fisher discriminant analysis,” Journal of Machine
Learning Research, vol. 8, pp. 1027–1061, 2007.

[25] Q. Gao, J. Liu, H. Zhang, X. Gao, and K. Li, “Joint global and local
structure discriminant analysis,” IEEE Transactions on Information
Forensics and Security, vol. 8, no. 4, pp. 626–635, 2013.

[26] C. Ding and L. Zhang, “Double adjacency graphs-based discrimi-
nant neighborhood embedding,” Pattern Recognition, vol. 48, no. 5,
pp. 1734–1742, 2015.

[27] X. Li, M. Chen, F. Nie, and Q. Wang, “Locality adaptive discrimi-
nant analysis,” in Proceedings of the International Joint Conference on
Artificial Intelligence, 2017, pp. 2201–2207.

[28] C. Liu, Y. Cao, Y. Luo, G. C. V. Kokkarane, Y. Ma, S. Chen, and
P. Hou, “A new deep learning-based food recognition system for
dietary assessment on an edge computing service infrastructure,”

IEEE TRANSACTIONS ON MOBILE COMPUTING 11

IEEE Transactions on Services Computing, vol. 11, no. 2, pp. 249–261,
2018.

[29] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. B.
Heinzelman, “Cloud-vision: Real-time face recognition using a
mobile-cloudlet-cloud acceleration architecture,” in Proceedings of
the IEEE Symposium on Computers and Communications, 2012, pp.
59–66.

[30] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2005, pp. 886–893.

[31] V. N. Vapnik, “An overview of statistical learning theory,” IEEE
Transactions on Neural Networks, vol. 10, no. 5, pp. 988–999, 1999.

[32] W. Zhang, X. Xue, H. Lu, and Y.-F. Guo, “Discriminant neighbor-
hood embedding for classification,” Pattern Recognition, vol. 39,
no. 11, pp. 2240–2243, 2006.

[33] S. Yan, D. Xu, B. Zhang, H. jiang Zhang, Q. Yang, and S. Lin,
“Graph embedding and extensions: A general framework for
dimensionality reduction,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 29, no. 1, pp. 40–51, 2007.

[34] T. E. Schouten and E. L. van den Broek, “Fast exact euclidean dis-
tance (feed): A new class of adaptable distance transforms,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 36,
no. 11, pp. 2159–2172, 2014.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[36] G. H. Golub and C. F. V. Loan, Matrix Computations. Baltimore,
USA: Johns Hopkins University Press, 1996.

[37] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
UK: Cambridge university press, 2004.

[38] “Columbia University Image Library,” http://www.cs.columbia.
edu/CAVE/software/softlib/coil-20.php, [Online; accessed 1-
Jan-2020].

[39] “The Sheffield Face Database,” https://www.sheffield.ac.uk/eee/
research/iel/research/face, [Online; accessed 1-Jan-2020].

[40] “Yale Face Database,” http://vision.ucsd.edu/content/
yale-face-database, [Online; accessed 1-Jan-2020].

[41] “The Database of Faces,” https://www.cl.cam.ac.uk/research/
dtg/attarchive/facedatabase.html, [Online; accessed 1-Jan-2020].

[42] “Handwritten Digits USPS data set,” https://www.kaggle.com/
bistaumanga/usps-dataset, [Online; accessed 1-Jan-2020].

[43] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp,
and C. Bonnet, “Openairinterface: A flexible platform for 5g re-
search,” Computer Communication Review, vol. 44, no. 5, pp. 33–38,
2014.

Chuntao Ding received the B.S. and M.S. de-
grees from SIAS International University in 2012
and Soochow University in 2015, respectively.
He is currently a Ph.D. candidate at the State key
Laboratory of Networking and Switching Tech-
nology, Beijing University of Posts and Telecom-
munications. His research interests include mo-
bile edge computing, deep learning.

Ao Zhou received the Ph.D. degrees in Bei-
jing University of Posts and Telecommunications,
Beijing, China, in 2015. She is currently an Asso-
ciate Professor with State Key Laboratory of Net-
working and Switching Technology, Beijing Uni-
versity of Posts and Telecommunications. She
has published 20+ research papers. She played
a key role at many international conferences.
Her research interests include Cloud Computing
and Edge Computing.

Xiulong Liu is currently a professor in College
of Intelligence and Computing, Tianjin University,
China. Before that, he received the B.E. and
Ph.D. degrees from Dalian University of Technol-
ogy (China) in 2010 and 2016, respectively. He
also worked as a visiting researcher in Aizu Uni-
versity, Japan; a postdoctoral fellow in The Hong
Kong Polytechnic University, Hong Kong; and a
postdoctoral fellow in the School of Computing
Science, Simon Fraser University, Canada. His
research interests include wireless sensing and

communication, indoor localization, and networking, etc. His research
papers were published in many prestigious journals and conferences
including TON, TMC, TC, TPDS, TCOM, INFOCOM, and ICNP, etc.
He received Best Paper Awards from ICA3PP 2014 and IEEE System
Journal 2017. He is also the recipient of CCF Outstanding Doctoral
Dissertation award 2017.

Xiao Ma received her Ph.D. degree in Depart-
ment of Computer Science and Technology from
Tsinghua University and B.S. degree in Telecom-
munication Engineering from Beijing University
of Posts and Telecommunications (BUPT), Bei-
jing, China, in 2018 and 2013, respectively. She
is currently a postdoctoral fellow at the State Key
Laboratory of Networking and Switching Tech-
nology, BUPT. Her research interests include
task scheduling and allocation in mobile cloud
computing and mobile edge computing.

Shangguang Wang received his Ph.D degree
at Beijing University of Posts and Telecommu-
nications in 2011. He is Professor and Deputy
Director at the State Key Laboratory of Network-
ing and Switching Technology (BUPT). He has
published more than 150 papers, and played
a key role at many international conferences,
such as general chair and PC chair. His research
interests include service computing, cloud com-
puting, and mobile edge computing. He is a se-
nior member of the IEEE, and the Editor-in-Chief

of the International Journal of Web Science.

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
https://www.sheffield.ac.uk/eee/research/iel/research/face
https://www.sheffield.ac.uk/eee/research/iel/research/face
http://vision.ucsd.edu/content/yale-face-database
http://vision.ucsd.edu/content/yale-face-database
https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://www.kaggle.com/bistaumanga/usps-dataset
https://www.kaggle.com/bistaumanga/usps-dataset

	Introduction
	Motivation & Problem Formulation
	Limitations of Prior Art
	Proposed Approach
	Challenges and Proposed Solutions
	Novelty and Advantages over Prior Art

	Related Work
	Detailed design of proposed framework
	Overview
	DFE Algorithm
	Constructing intra-class and inter-class structures
	Optimization

	NestDFE Algorithm

	Evaluation
	Experimental Setup
	System Implementation
	Experimental Results
	Recognition Accuracy
	Network Traffic
	Feature Matching Time
	Reduction on Memory Space
	Reduction on Switching Overhead

	Conclusion
	References
	Biographies
	Chuntao Ding
	Ao Zhou
	Xiulong Liu
	Xiao Ma
	Shangguang Wang

