
1

Delay-aware Microservice Coordination in
Mobile Edge Computing: A Reinforcement

Learning Approach
Shangguang Wang, Senior Member, IEEE , Yan Guo, Ning Zhang, Member, IEEE ,

Peng Yang, Ao Zhou, and Xuemin (Sherman) Shen, Fellow, IEEE

Abstract—As an emerging service architecture, microservice enables decomposition of a monolithic web service into a set of
independent lightweight services which can be executed independently. With mobile edge computing, microservices can be further
deployed in edge clouds dynamically, launched quickly, and migrated across edge clouds easily, providing better services for users in
proximity. However, the user mobility can result in frequent switch of nearby edge clouds, which increases the service delay when users
move away from their serving edge clouds. To address this issue, this paper investigates microservice coordination among edge clouds
to enable seamless and real-time responses to service requests from mobile users. The objective of this work is to devise the optimal
microservice coordination scheme which can reduce the overall service delay with low costs. To this end, we first propose a dynamic
programming-based offline microservice coordination algorithm, that can achieve the globally optimal performance. However, the
offline algorithm heavily relies on the availability of the prior information such as computation request arrivals, time-varying channel
conditions and edge cloud’s computation capabilities required, which is hard to be obtained. Therefore, we reformulate the
microservice coordination problem using Markov decision process framework and then propose a reinforcement learning-based online
microservice coordination algorithm to learn the optimal strategy. Theoretical analysis proves that the offline algorithm can find the
optimal solution while the online algorithm can achieve near-optimal performance. Furthermore, based on two real-world datasets, i.e.,
the Telecom’s base station dataset and Taxi Track dataset from Shanghai, experiments are conducted. The experimental results
demonstrate that the proposed online algorithm outperforms existing algorithms in terms of service delay and migration costs, and the
achieved performance is close to the optimal performance obtained by the offline algorithm.

Index Terms—Microservice, mobile edge computing, coordination, delay, migration.

F

1 INTRODUCTION

D RIVEN by container technology, microservice architec-
ture can decompose a monolithic web service into a

set of lightweight services which can be executed inde-
pendently [1]–[3]. Compared with monolithic architecture,
microservice architecture can bring flexibility and scalabil-
ity because individual microservice can be deployed, mi-
grated, and removed on demand during runtime [4], [5].
Therefore, it has drawn great attention from both academia
and industry. For instance, many enterprises are replacing
monolithic architecture by microservice architecture, such
as Facebook, AT&T, Amazon1, Netflix2, and Uber3. On the
network side, mobile edge computing emerges as a new
network architecture, where edge clouds are deployed at
base stations by endowing the latter with cloud function-

• S. Wang, Y. Guo, and A. Zhou are with the State Key Laboratory of
Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing, China.
E-mail:{sgwang, guoyan, aozhou}@bupt.edu.cn

• N. Zhang is with the Department of Computing Sciences, Texas A&M
University-Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX, USA.
E-mail: ning.zhang@tamucc.edu

• P. Yang and X. Shen are with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON, Canada, N2L 3G1.
E-mail: {p38yang; sshen}@uwaterloo.ca

1. https://thenewstack.io/led-amazon-microservices-architecture/
2. https://www.nginx.com/blog/microservices-at-netflix-architectu

ral-best-practices/
3. https://eng.uber.com/soa/

alities [6]–[11]. Combining microservice architecture with
mobile edge computing has attracted much attentions. Mi-
croservices in edge clouds can provide proximity services
for nearby mobile users with low delay. Moreover, they can
be deployed dynamically, launched quickly, and migrated
easily on demand.

Along with the aforementioned benefits come the great
challenges. Due to the limited coverage of an edge cloud
and high user mobility (e.g., autonomous vehicles), the
service delay can be greatly deteriorated when users move
away from their serving edge clouds [12], [13]. It is of
significance yet very challenging to ensure that moving
users can still receive services with low delay. However, the
majority of existing studies on microservice deployment and
scheduling only deal with a static network and fixed ser-
vice requests [14]–[16]. The dynamically changing resource
availability and service requests related to user mobility are
seldom considered in mobile edge computing environment.
To address this issue, service migration is proposed, which
deals with whether, how, and where the service should
be migrated when users change their locations [17]–[20].
However, they only focus on migration of a single service,
without considering other deployed services that can serve
mobile users and fail to fully utilize the dynamic network
resources.

In mobile edge computing, the coordination of microser-
vices deployed across edge clouds plays a significant role in

2

providing seamless and real-time services to mobile users. It
requires that the running microservices on some edge clouds
can be deployed quickly in any edge cloud. The critical
question is how to choose the optimal edge cloud to run
the microservices for mobile users. Specifically, microservice
coordination in mobile edge computing is mainly to deter-
mine which edge cloud should perform the microservices,
taking into account the user mobility and the dynamics in
the network.

A sample scenario is illustrated in Fig. 1, where an
autonomous vehicle detects cars, pedestrians, cyclists, road
signs, and other objects in real time to make the appropriate
control decisions for driving safety [21]. In this scenario,
there are one Internet cloud, five edge clouds, nineteen
base stations, and one automatic vehicle. An edge cloud is
responsible for all base stations located within its coverage,
and a base station only connects with a single edge cloud.
The object detection microservices are deployed on some
edge clouds. The microservices are performed by edge
clouds for autonomous vehicle with limited computational
capabilities [22] [23]. Suppose that the vehicle has a trajecto-
ry shown in Fig. 1. When the vehicle is within the coverage
of edge cloud c1, the object detection can be performed by
the microservices in c1. When the vehicle reaches edge cloud
c2, the object detection can be performed by the original mi-
croservices in c1 with a long communication delay, or by c3
or c4 with computation data migration, or by c2 with quick
microservice deployment and computation data migration.
Note that, the computation data migration is to migrate
the unfinished computation task and intermediate compu-
tation state (file system and memory state) to synchronize
instances. A microservice should be deployed rapidly if
there is no such microservice in the selected edge cloud.
Similarly, when the vehicle reaches c4, the object detection
can be performed by c4 directly, or by other edge clouds
with possible computation migration and microservice de-
ployment or by Internet cloud. When the vehicle reaches c5,
the object detection can be performed by any edge cloud
or Internet cloud. Therefore, microservice coordination is to
coordinate the microservices within different edge clouds to
perform real-time object detection during the entire journey
of mobile users.

When an autonomous vehicle moves from the cover-
age of one edge cloud to the coverage of another edge
cloud, multiple edge clouds with different computation
capabilities are available to either perform the microservices
or deploy the microservices. The object detection can be
performed in three different ways, i.e., by the previously
serving edge cloud, by Internet cloud or the edge clouds
deployed with the microservices, or by the current edge
cloud with no microservices where the microservices will
be deployed. In the first case, there is no migration delay
and cost for computation data migration and microservice
deployment, but at the expense of communication delay.
In the second case, no microservice deployment is needed,
but at the expense of communication and migration delay
and migration cost. In the third case, the communication
delay is lowest, with the expense of potential migration
delay and cost. Therefore, there exists a trade-off between
the overall service delay and migration cost in microservice
coordination. An optimal microservice coordination scheme

Road

c1

c2 c4

c3

c5

Edge Cloud

Base Station

Autonomous VehicleInternet Cloud

ms

ms

ms

ms

Fig. 1: Illustration of microservice coordination in mobile edge
computing.

is urgently needed to coordinate edge clouds for perform-
ing the microservice sequentially, in order to reduce the
overall delay and migration cost. Note that, microservice
coordination for the duration of a mobile user’s journey
is not a simple repetitive selection of edge clouds. The
current coordination decisions may change the microservice
deployment, which in turn affect the subsequent decisions.

In this paper, we investigate the microservice coordina-
tion problem with the objective of minimizing the overall
delay and migration cost. The main contributions of this
work are summarized as follows:

1) We first study the microservice coordination with the
availability of information regarding the service re-
quests, computational capabilities of the edge cloud-
s, and the channel conditions. We formulate it as a
shortest-path problem with a look-ahead time window
and propose a dynamic programming-based offline mi-
croservice coordination algorithm. Through theoretical
analysis, it is proved that such offline algorithm can
achieve the optimal solution.

2) Furthermore, we investigate the microservice coordina-
tion problem without prior information. We formulate
it as Markov decision process and propose a reinforce-
ment learning (RL)-based online microservice coordi-
nation algorithm to the optimal decision. Through the-
oretical analysis, it is proved that the proposed online
algorithm can achieve near optimal solution.

3) Experiments are implemented based on two real-world
datasets, i.e., Shanghai Telecom’s base station dataset
and Shanghai Taxi Track dataset. The results demon-
strate that the offline microservice coordination algo-
rithm can find the optimal solution with the lowest
delay and migration cost while the online microservice
coordination algorithm can achieve close-to-optimal
performance.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 presents the system
model and problem formulation. Section 4 proposes the
dynamic programming-based offline microservice coordi-
nation algorithm. Section 5 presents the RL-based online
microservice coordination algorithm and the performance

3

analysis. Section 6 provides experimental results. Finally,
conclusions are provided in Section 7.

2 RELATED WORK

Microservice architecture has significant benefits in terms
of flexibility and scalability, compared with the tradition-
al monolithic architecture. Microservice has been drawing
great attentions in the literature [14].

To provide complex services for users using deployed
microservices, it is necessary to schedule the distributed
microservices in chains appropriately [15] [24]. For example,
Bhamare et al. [25] studied the scheduling of microser-
vices among multiple clouds, and presented a affinity-
based scheduling heuristic method to reduce the overall
turnaround time of an end-to-end service and the total
traffic generated. Niu et al. [16] proposed a microservice
chain-oriented load balancing algorithm which balances the
working load based on the microservice requirements of
chains and minimizes delay. However, these studies on
microservice deployment and scheduling mainly focus on
static networks and fixed service requests. The presence
of dynamically changing resource availability and service
requests related to user mobility in a mobile edge computing
environment has not been considered sufficiently.

With user mobility, it becomes of great challenges to
enable seamless and real-time responses to service requests
from mobile users. To address this issue, service migration
is proposed, which deals with whether, how, and where
the service should be migrated when users change their
locations [17]–[20]. For example, Yao et al. [26] studied the
VM migration in Vehicle Ad-Hoc Network, to minimize the
overall network cost for migration and normal data traffic.
Ksentini et al. [27] considered 1-D user mobility model
and then formulate the mobility driven service migration
problem as a Markov decision process. Then, the mobility
model is extended to 2-D mobility in [28] [29]. Taleb et al.
[29] considered 2-D random walk mobility model and apply
a Markov decision process based algorithm for optimizing
service migration decisions. Further, Plachy et al. [30] ex-
ploited prediction of users’ movement and proposed an al-
gorithm to find the most suitable data communication path
or VM migration. In addition, Zhang et al. [31] proposed a
deep RL based virtual machine migration approach. Tang et
al. [32] proposed a container migration algorithm to support
mobility tasks with various application requirements. Sun
et al. [33] developed a user-centric energy-aware service
migration scheme by joint optimizing the radio resource and
the computational resource.

However, these studies only focus on the migration of a
single service, without considering other deployed services
that can serve mobile users. They fail to fully utilize network
resources. In contrast to the above studies, we focus on
microservice coordination in mobile edge computing while
considering microservices already deployed in many edge
clouds. In our microservice coordination scheme, users not
only can access service from the current edge cloud or the
edge cloud which the service is migrated to, but also from
other edge clouds where the microservices have already
been deployed. Different from the migration of a single
service, the migration in microservice coordination refers to

the migration of unfinished tasks, not specific microservices.
The microservices will not disappear with the migration of
the tasks of a single user, and can still provide service for
other users. The coordination of microservices in different
edge clouds aim to find the optimal sequence of edge
clouds to perform the microservices for mobile users, which
encompasses the selection of edge clouds and dynamic
microservice deployment.

3 SYSTEM MODEL AND PROBLEM DEFINITIONS

3.1 System Model
As shown in Fig. 1, we consider a mobile edge network
G = (B∪C,E) with a number of base stations, a set of edge
clouds placed at the base stations, and an Internet cloud.
Denote B as the set of base stations, C as the set of clouds,
and E as the set of links between base stations. In addition,
m and n denote the number of base stations and clouds in
B and C , respectively. Each base station bi ∈ B(1 6 i 6
m) is assigned to one and only one edge cloud. All edge
clouds together with an Internet cloud can provide service
for users. The Internet Cloud host all of the microservices.
Each cloud ci ∈ C(1 6 i 6 n) can be either an edge cloud
or an Internet cloud. The microservice configuration in a
mobile edge network is denoted by H = {hi,t}(1 6 i 6
n, t = 1, ...), where hi,t represents whether cloud ci hosts
the microservices at time t. Here, hi,t = 1 if cloud ci hosts
the microservices at time t; otherwise, hi,t = 0. Note that ∀t,
hi,t = 1 if ci denotes an Internet cloud. In Fig. 1, there are
19 base stations, five edge clouds, and an Internet cloud. In
addition, three microservices have been deployed according
to the mobile access pattern in mobile edge computing [34].

In Fig. 1, the autonomous vehicle captures images
(video) continuously and then transmits the detection task
to nearby edge clouds through the local base stations. Note
that we call the edge cloud that is responsible for the local
base station of the mobile user the nearby edge cloud. For
simplicity, we assume that the autonomous vehicle follows
a certain path to its destination. Its trajectory is denoted
by Lu = {lu(t)}, where lu(t) denotes the location of the
vehicle at time t. As the vehicle moves, its local base station
switches seamlessly and automatically according to the
mobility management protocol communication networks.
The switch among base stations leads to the automatic
switch of the vehicle’s nearby edge cloud. Therefore, we can
determine the nearby edge cloud of the user at time t (which
is denoted by e(t)) according to Lu. To handle the case in
which the autonomous vehicle moves from the coverage of
one edge cloud to the coverage of another edge cloud, i.e.,
e(t) 6= e(t − 1), a service coordination scheme is needed to
determine which edge cloud performs the computation task
and whether new microservices should be deployed. The
objective of microservice coordination is to minimize the
overall delay (consisting of computation delay, transmission
delay, and migration delay) and the migration cost.

3.2 Problem Definitions
3.2.1 Computation Delay
The vehicle captures videos and transmits the entire detec-
tion task to edge clouds for computing. The task at time t

4

can be represented by a three-parameter modelA(pt, τt, wt),
where pt denotes the task input size (in bits), τt denotes
the completion deadline (in seconds), and wt is the compu-
tational intensity (in CPU cycles per bit). Taking the real-
time pedestrian detection application as an example, the
vehicle generates a video stream detection task that will
be computed on the edge cloud. During each time slot, the
vehicle transmits a video clip with a data size of pt.

Each edge cloud can allocate computational resources
for multiple tasks from different users simultaneously by
processor sharing. However, the edge clouds have relatively
limited computational resources. It is necessary to consider
the non-negligible task execution time in a general mobile
edge computing system. Let fi,t denote the computational
intensity (i.e., CPU frequency) that edge cloud ci can allocate
to the task pt. If edge cloud ci is selected to execute the
task pt, the task execution time, denoted by re(i, t), can be
calculated as

re(i, t) =
ptwt
fi,t

. (1)

Note that the computation delay is defined as infinity if
fi,t = 0. Furthermore, when the task generated at time t
arrives at edge cloud ci, there may be some unfinished tasks
waiting for processing due to the limited computational
capacity of edge clouds. Therefore, the queuing time should
be taken into account. Then, the total computation delay for
task pt performed by edge cloud ci is

rc(i, t) = re(i, t) + rq(i, t), (2)

where rq(i, t) denotes the queuing time of task pt in edge
cloud ci. Let wqi,t denote the computational intensity of
unfinished tasks in edge cloud ci and fqi,t denote the com-
putational intensity that edge cloud ci allocate to the task
wqi,t. The queuing time can be computed by

wqi,t
fqi,t

.

3.2.2 Communication Delay
The task data transmission can involve three steps: the
data transmission from the vehicle to its local base station
through the wireless channel; the data transmission from
its local base station to the nearby edge cloud; and the data
transmission from its nearby edge cloud to the selected edge
cloud.

For the wireless channel, let gt denote the channel gain
between the vehicle at location lu(t) and its local base station
bt ∈ B. Denote S as the transmission power of the vehicle,
W as the channel bandwidth, and N as the noise power.
Then, the maximum transmission rate is

trt =W log2(1 +
Sgt
N

). (3)

In the mobile edge network, let ei,j ∈ E denote the
communication delay of each link between two base stations
bi and bj . The topological structure of these base stations is

E =

e1,1 · · · e1,m

...
. . .

...
em,1 · · · em,m

 , (4)

where base station bi and base station bj are connected if
ei,j is finite, otherwise, they are not connected.

Each edge cloud is implemented on a base station e-
quipped with a server based on the existing network topol-
ogy, so the path between a base station and its edge cloud
as well as the path between edge clouds are composed of
the links in the weighted graph E. Specifically, the path
from local base station bt to selected edge cloud ci is the
shortest path between bt and ci through e(t). Note that if
ci denotes an Internet cloud, the path between bt and ci
is the path from base station to Internet cloud through the
nearby edge cloud e(t) and core network. Let d(i, t) denote
the communication delay from the local base station to the
selected edge cloud ci. Then, the overall communication
delay of task pt is given by

rt(i, t) =
pt
trt

+ d(i, t). (5)

3.2.3 Migration Delay and Cost
When the vehicle moves and the serving edge cloud switch-
es, an additional delay and cost are incurred because of
the computation migration and possible deployment of
microservices. Let x(t) ∈ C denote the edge cloud that
serves the tasks at timeslot t. If the microservices cannot
be found in x(t + 1), i.e., hx(t+1),t = 0, the microservices
will be deployed rapidly. The unfinished computation task
and intermediate data (file system and state data) are then
migrated to x(t+ 1) to synchronize instances.

The process of migrating computation data is inspired by
pre-copy memory migration [13] [35]. Here, all the migra-
tion data are pre transmitted from x(t) to x(t+1) while the
microservice is still running until prespecified criteria are
met. Then, the running microservice is suspended and the
remaining data are transferred to the destination edge cloud.
During the computation migration, only the downtime,
namely the time interval during which the microservice is
not running, affects the user-perceived delay. Therefore, we
only consider the downtime of migration, instead of the
overall migration time. After the migration, the unfinished
task will continue to be processed in edge cloud x(t + 1).
Since the computation time of unfinished task at the previ-
ously serving edge cloud has been counted in Equation 1,
it needs to be recalculated. Therefore, the migration delay
consists of the downtime of the migration and the new
execution time of unfinished task.

The size of unfinished task at t is

pmt = min{pt,max{0, pt−
M t− rt(x(t), t)− rq(x(t), t)

re(x(t), t)
pt}},

(6)
where M t is the length of a time slot. Let p̃t denote
pt − Mt−rt(x(t),t)−rq(x(t),t)

re(x(t),t)
pt. If the communication delay is

longer than a time slot, the p̃t is greater than or equal to pt,
therefore pmt = pt and the whole task pt should be migrated.
If only a part of task can be finished in one time slot, p̃t is
the size of unfinished task and pmt = p̃t.If the task pt can be
finished in one time slot, i.e., rt(x(t), t) + rc(x(t), t) 6M t,
p̃t is less than or equal to 0, therefore max{0, p̃t} = 0 and
there is no data need to be migrated.

Therefore, the migration delay of pmt is:

rm(x(t), x(t+ 1), t+ 1) = λtI{x(t+ 1) 6= x(t)}

+
pmt wt

fx(t+1),t+1
− pmt wt
fx(t),t

,
(7)

5

where λt is the downtime of the migration and I{y} is an
indictor function. I{y}=1 if event y is true and I{y} = 0
otherwise. The unfinished task pmt is executed in edge cloud
x(t+ 1) rather than the previously serving edge cloud x(t),
therefore the execution time of migrated task is pmt wt

fx(t+1),t+1
−

pmt wt
fx(t),t

. If the computing power of x(t+1) is more than x(t),
pmt wt

fx(t+1),t+1
− pmt wt

fx(t),t
is less than 0 which means the migration

can reduce the execution delay. Otherwise, the migration
can increase the execution delay of migrated task. We set
rm(:, :, 1) = 0 because there is no migration in the first time
slot. Note that the effect of both transferred file system and
memory state are considered and captured in the downtime.
Therefore, we do not need to model them separately.

The cost comprises monetary cost, migration resource
consumption, and the cost of the placement of new mi-
croservices. The migration cost at time t+1 can be expressed
as

u(x(t), x(t+1), t+1) = µ(hi,t, x(t), x(t+1))I{x(t+1) 6= x(t)},
(8)

where µ(hi,t, x(t), x(t + 1)) is a non-decreasing function of
d(x(t), x(t+ 1). Note that µ(:, :, 1) = 0 and µ(1, :, :) = 0.

The microservice configuration of the edge clouds will
change according to the microservice deployment, and this
change can be expressed as follows:

hi,t+1 =

{
1 if i = x(t+ 1)
hi,t else.

(9)

3.2.4 Problem Formulation
The ultimate goal is to find the optimal microservice coordi-
nation scheme x∗(1, ...,∞) that minimizes the overall delay
and migration cost over a sufficiently long time. The overall
delay at time slot t is

r(x(t−1), x(t), t) = rc(x(t), t)+rt(x(t), t)+rm(x(t−1), x(t), t).
(10)

The overall delay of a microservice coordination scheme
for vehicle Lu is

R(x) =
∞∑
t=1

r(x(t− 1), x(t), t). (11)

The overall migration cost is

U(x) =
∞∑
t=1

u(x(t− 1), x(t), t). (12)

Formally, the microservice coordination problem is for-
mulated as follows:

P1: min
x(1,··· ,∞)

R(x), U(x) (13)

s.t. rc(x(t), t) + rt(x(t), t) ≤ τt, ∀t
x(t) ∈ C, ∀t. (14)

However, finding the optimal solution to P1 is difficult,
because it requires the complete information about the
entire trip of the vehicle and edge clouds, including the
trajectory of the vehicle, the parameters of all tasks, com-
putational intensity of all edge clouds, and traffic intensity
of all base stations. Therefore, depending on whether we
have the complete information, we devise two coordination
algorithms. The first is an offline coordination algorithm

where we know the complete future information for a look-
ahead time window. The second is an online coordination
algorithm in which we only know the current information.
In what follows, we will present the offline and online
coordination algorithms, respectively.

4 OFFLINE MICROSERVICE COORDINATION

In this section, we focus on the microservice coordination
problem when the complete information for the next T slots
is available. We devise an offline algorithm to find the opti-
mal solution, which is denoted as xoff . The proposed offline
algorithm can provide a theoretical upper bound on the
performance of any practical online algorithms. Moreover,
this offline algorithm can also be applied to the microservice
coordination problem with predicted information.

4.1 Offline Problem Formulation

When the look-ahead window size T is given, the overall
delay and migration cost of a microservice coordination
scheme for each window (containing time slots t0, · · · , t0 +
T − 1) are as follows:

RT (x) =
t0−1+T∑
t=t0

r(x(t− 1), x(t), t), (15)

UT (x) =
t0−1+T∑
t=t0

u(x(t− 1), x(t), t). (16)

The offline microservice coordination problem with a
look-ahead window can be stated as follows:

P2: min
xoff (t0,...,t0+T−1)

RT (x), UT (x) (17)

s.t. rc(x(t), t) + rt(x(t), t) ≤ τt, ∀t ∈ [t0, t0 + T − 1]
x(t) ∈ C, ∀t ∈ [t0, t0 + T − 1].

(18)

To obtain an optimal solution, we employ the simple
additive weighting model to transform the problem into a
single-objective optimization problem with weakly Pareto
optimal solutions. The utility function is as follows:

F(x) = ω
RT (x)−Rmin
Rmax −Rmin

+ (1− ω)UT (x)− Umin
Umax − Umin

, (19)

where Rmax and Umax represent the maximum value of
delay and migration cost during the time window T , respec-
tively. Moreover Rmin and Umin represent the minimum
value of the delay and migration cost over time window
T , respectively. Weight ω represents the user preference for
delay, and 0 6 ω 6 1. The optimization problem can then
be stated as follows:

P3: min F(x). (20)

The solution of P3 is a weakly Pareto optimal solution of
P2. Note that the solution of P3 can reach Pareto optimal
if ω ∈ (0, 1). The according definitions and proof are as
follows.

Definition 1. Solution x∗ ∈ C is said to be a weakly
Pareto optimal solution of P2, if and only if there does not
exist another x ∈ C such that R(x) < R(x∗),U(x) < U(x∗).

6

Definition 2. Solution x̂ ∈ C is said to be a Pareto
optimal solution of P2, if and only if there does not exist
another x ∈ C such that R(x) 6 RT (x̂),UT (x) 6 U(x̂).

Theorem 1. The solution of P3 is a weakly Pareto optimal
solution of P2, and the solution of P3 is Pareto optimal if the
weight coefficient ω is a positive number less than 1.

Proof: Let x∗ be a solution of P3. Suppose that it is
not a weakly Pareto optimal solution of P2. In this case,
there exists a solution x ∈ C such that R(x) < R(x∗) and
U(x) < U(x∗). According to the assumption of the weight-
ing coefficients, 0 6 ω 6 1. Thus, we have ωRT (x)−RminRmax−Rmin +

(1−ω)UT (x)−UminUmax−Umin < ωRT (x
∗)−Rmin

Rmax−Rmin +(1−ω)UT (x
∗)−Umin

Umax−Umin .
This contradicts the assumption that x∗ is a solution of P3.
That is, x∗ is a weakly Pareto optimal solution of P2.

If ω ∈ (0, 1), suppose that x∗ is not a Pareto optimal
solution of P2. This means that there exists a solution x ∈ C
such that R(x) 6 R(x∗), U(x) 6 U(x∗), and either R(x) <
R(x∗) or U(x) < U(x∗). Because 0 < ω < 1, we have
ωRT (x)−RminRmax−Rmin +(1−ω)UT (x)−UminUmax−Umin < ωRT (x

∗)−Rmin
Rmax−Rmin +(1−

ω)UT (x
∗)−Umin

Umax−Umin . This contradicts the assumption that x∗ is a
solution of P3. That is, x∗ is a Pareto optimal solution of P2
if ω ∈ (0, 1). �

4.2 Equivalence to the Shortest-Path Problem
The offline microservice coordination problem is equivalent
to a shortest-path problem as shown in Fig. 2. In this study,
we consider that the re-selection of edge clouds to perform
the microservices and potential migration only occurs when
the nearby edge cloud switches. The layers of the shortest-
path problem correspond to the switch times of the nearby
edge cloud, rather than the actual physical time slots. Each
node represents a possible edge cloud, each edge represents
a possible selection of edge clouds when the vehicle moves
out of the coverage area of the nearby edge cloud, and the
weight of each edge is the sum of the utility value from the
current slot to the next possible reselection, where the utility
value of x(t) is

f(x(t), t) = ω
r(x(t), t)−Rmin
Rmax −Rmin

+ (1− ω)u(x(t), t)− Umin
Umax − Umin

.

(21)
Note that, when we compute the weight of x(t) at time slot
t, x(t−1) has been determined, so the utility value f is only
related to (x(t), t).

In Fig. 2, there are three candidate edge clouds for x(t),
and the switch times of nearby edge cloud is three. The
edge cloud at time slot t0 − 1 is given, and the weight of
edge (x(t0 − 1), x(t0)) is the sum of the utility values from
t0 to t0 + 4. The endpoint is virtual and the weight of each
edge to the endpoint is 0. The weight of the shortest path is
the minimum utility value

∑t0+T−1
t=t0

f(x(t), t) of all possible
microservice coordination schemes, and the shortest path
corresponds to the optimal coordination scheme.

4.3 Offline Microservice Coordination Algorithm
Inspired by the approach of dynamic programming, we pro-
pose an offline microservice coordination algorithm, called
offline algorithm, to solve this shortest-path problem. The
offline algorithm is shown in Algorithm 1, where j repre-
sents the candidate edge clouds in the previous selection

x(t0-1)

x(t0)=1 x(t0)=2 x(t0)=3

x(t0+5)=1 x(t0+5)=2 x(t0+5)=3

x(t0+12)=2 x(t0+12)=3 x(t0+12)=4

0

Layer 1

Layer 2

Layer 3

Fig. 2: Offline scenario formulation with T = 20, and the nearby
edge cloud e(t) switches at slots t0, t0 + 5, and t0 + 12.

and i represents the candidate edge clouds in the current
selection. The values of F ′(j) for all j represent the total
utility value from time slot t0 to the current nearby edge
cloud switch, F (i, j) for all i, j represents the total utility
value from the current switch of nearby edge cloud to the
next switch of nearby edge cloud, and f(i, j, t) represents
the utility value at time slot t when the previous edge cloud
is i and the current edge cloud is j, i.e., x(t−1) = i, x(t) = j.

In Algorithm 1, Lines 3–26 iteratively find the shortest
path (optimal microservice coordination scheme) for each
look-ahead time window T . The iteration starts from the
second layer of the graph in Fig. 2. When the nearby edge
cloud switches (Line 5), Line 8 selects the optimal edge
cloud with respect to the previous selection by solving the
Bellman’s equation of the problem [36]. For example, in Fig.
2, when t = t0 + 12, F ′ is the set of the values of the nodes
in the second layer, and F is the set of the weights of the
edges between the second layer and the third layer. Line
8 selects the optimal edge cloud from the second layer for
each node in the third layer. Cloud xi(k) in Line 9 denotes
the optimal edge cloud at the (k − 1)th switch of nearby
edge cloud for edge cloud i at the kth switch of nearby edge
cloud. After iterating from t0 to t0+T −1, the algorithm can
determine the optimal microservice coordination scheme for
time window T .

Consider a more general setting in which the set of
candidate edge clouds is time-varying. For example, the
edge clouds can be turned on/off according to a sleeping
strategy for energy saving [37]. Determining the optimal
microservice coordination scheme for a varying edge cloud
set is of great challenge. However, in Algorithm 1, the set
of alternative edge clouds for each x(t) can be different.
Therefore, this algorithm can also be applied to a varying
edge cloud set.

4.4 Performance Analysis
In this subsection, we show that the result of the offline
algorithm is the optimal solution of P3 and analyze its time
complexity.

Theorem 2. For the offline microservice coordination
problem with a look-ahead time window, Algorithm 1 pro-
vides the optimal solution.

7

Algorithm 1 Offline algorithm

Input: Lu, E, H ; A(pt, τt, wt), the computational intensity of
all edge clouds and the traffic intensity of all base stations

Output: Optimal microservice coordination scheme {x(t)}
1: Initialize t0 = 1
2: loop
3: Initialize j = x(t0 − 1), F (i, j) = f(i, j, t0), F

′(j) =
0, k = 0

4: for t = t0 + 1, · · · , t0 + T − 1 do
5: if e(t) 6= e(t− 1) then
6: k = k + 1
7: for all i do
8: j∗ = argminj{F ′(j) + F (i, j)}
9: xi(k) = j∗

10: F ′(j) = F ′(j∗) + F (i, j∗)
11: F (i, j) = f(i, j, t)
12: end for
13: else
14: for all i, j do
15: F (i, j) = F (i, j) + f(i, j, t)
16: end for
17: end if
18: end for
19: k = k + 1
20: for all i do
21: j∗ = argminj{F ′(j) + f(i, j, t)}
22: xi(k) = j∗

23: F ′(j) = F ′(j) + F (i, j∗)
24: end for
25: j∗ = argminj{F ′(j)}
26: Apply coordination scheme xj∗ in slot t0, · · · , t0+T −1
27: t0 = t0 + T
28: end loop

Proof: Define pk,n as the decision sequence of edge cloud
x(t) during the sub-process from the kth layer to the end,
and define p∗k,n to be the result of the offline algorithm for
this sub-process. Define Vk,n as the overall utility function
of pk,n. According to j∗ = argminj{F ′(j) + F (i, j)} and
F ′(j) = argminj{F ′(j) + F (i, j)} in Lines 8 and 10, we
have

V1,k+1(p
∗
1,k+1) = minpk,k+1

{V1,k(p
∗
1,k) + Vk,k+1(pk,k+1)}.

(22)
It means that the shortest path from the beginning to the
(k + 1)th layer is the minimum sum of the shortest path
from the beginning to the kth layer and the path from the
kth layer to the (k + 1)th layer.

For the utility function of the overall process V1,n of all
possible schemes p1,n, according to Eq.(22), we have

V1,n(p1,n) = V1,n−1(p1,n−1) + Vn−1,n(pn−1,n)
≥ minp1,n−1

{V1,n−1(p1,n−1)}+ Vn−1,n(pn−1,n)
= V1,n−1(p

∗
1,n−1) + Vn−1,n(pn−1,n)

≥ minpn−1,n
{minp1,n−1

{V1,n−1(p1,n−1)}
+ Vn−1,n(pn−1,n)}

= V1,n(p
∗
1,n).

(23)
Therefore, the result of the offline algorithm p∗1,n is the
optimal solution of the offline microservice coordination
problem with a look-ahead time window. �

The time-complexity of Algorithm 1 is O(|S|2T), where
|S| is the number of states, because there are at most |S|2

candidate state-action pairs in Lines 7–8 and 15, and there
can be at most |S|2 ∗ T possible selection schemes.

5 ONLINE MICROSERVICE COORDINATION

In this section, we consider the scenario in which only the
current information is known and we propose an online al-
gorithm to solve P1 without future information by learning
the future reward of current decisions.

5.1 Equivalence to Markov Decision Process

The microservice coordination problem is a sequential de-
cision problem and can be formulated within a Markov
decision process framework.

The state at time slot t is denoted by s(t) = {x(t), h(t)},
where x(t) is the edge cloud that performs the computation
tasks and h(t) is the microservice instance configuration of
all edge clouds. Policy π, which makes control decisions at
any state s(t), is a probability distribution on the action set,
and we use a(s(t)) ∈ C to represent the action of selecting
a new edge cloud for s(t). This action causes the system to
transmit to a new state s(t + 1) = s′(t) = (x(t + 1), h(t +
1)) = a(s(t)). The immediate reward of action a(s(t)) is
Ras = −f(s(t), a, t), where f(s(t), a, t) is the utility value
at time t + 1 when current state is s(t) and the selected
edge cloud for next time slot is a. Starting from initial state
s(0) = s0, the long-term cumulative reward function is

Gπ(0) =
∞∑
k=0

γkRaπs(k), (24)

where γ ∈ [0, 1] is the discount factor.
The objective of the microservice coordination problem

is to find the policy π with the maximum expected cu-
mulative reward, and we denote the expected value of
cumulative reward Gπ at state s by state-value function

Vπ(s) = E

[∞∑
k=0

γkRaπs(k)|s(0) = s

]
. (25)

Moreover, the optimal state-value function is

V ∗(s0) = max
π

Vπ(s0). (26)

Theorem 3. The optimal solution is the stationary pol-
icy obtained by Bellman’s optimal equation V ∗(s) =
maxa{Ras + γ

∑
s′ P

a
s,s′V

∗(s′)}.
Proof: From the definition of the state-value function, we

know that

V (s) = E [G(t)|s(t) = s]

= E
[
Ras(t) + γ(Ras(t+1) + γRas(t+2) + · · ·)|s(t) = s

]
= E

[
Ras(t) + γG(t+ 1)|s(t) = s

]
= E

[
Raπs(t) + γV (s(t+ 1))|s(t) = s

]
.

(27)
The last equation is true because

V (s(t)) = Est,st+1,···(R
a
st)

+ γG(t+ 1))

= Est(R
a
st + γEst+1,···(G(t+ 1)))

= Est(R
a
st + γV (s(t+ 1))).

(28)

8

Therefore, Vπ(s) =
∑
a π(a|s)

(
Ras + γ

∑
s′ P

a
s,s′Vπ(s

′)
)

,
where π(a|s) is the probability of taking action a at state
s, and P as,s′ is the probability of transition from s to s′

by a. According to the definition of an optimal state-value
function, V ∗(s) = maxa{Ras + γ

∑
s′ P

a
s,s′V

∗(s′)}. �

5.2 RL-Based Online Microservice Coordination Algo-
rithm
To find the optimal policy of the microservice coordination
problem based on Markov decision process framework, we
propose an RL-based online microservice coordination algo-
rithm, called online algorithm, as shown in Algorithm 2. RL
is concerned with how an agent ought to take actions in an
environment so as to maximize the cumulative reward. The
agent in microservice coordination can learn the long-term
cumulative reward of current selections by trial-and-error
interaction with the dynamic mobile edge environment.

The online algorithm is inspired by the Q-learning algo-
rithm, which is one of the most popular RL methods that
is applied in many research areas, such as service migration
[34] and computation offloading [38]. In Algorithm 2, Lines
5–10 form an iteration in which the agent takes action at
current state s to move to the next state s′ by receiving an
immediate reward R̂ for updating the Q-table. Here, Q(s, a)
in the Q-table represents the expected long-term reward of
taking action a at state s. Line 6 selects the actions for state s
according to the ε-greedy policy. The specific ε-greedy policy
used here is

π(a|s) =
{

1− ε+ ε
|A(s)| if a = argmaxaQ(s, a)

ε
|A(s)| else

,

(29)
where |A(s)| is the number of alternative actions for state s.
The ε-greedy policy balances exploitation and exploration
strategies, where exploitation selects the action with the
maximum Q value and exploration selects the other actions.
Reward R̂ in Line 7 is the predicted reward provided by
the future reward parameter prediction module according
to the historical data of edge clouds and base stations.
The specific prediction method used in this study records
the parameters and regards the mean of the records up to
the current time slot as parameters for the future reward.
The iteration is terminated when Q(s, a) converges. The
online algorithm considers not only the immediate reward
of current decisions, but also the future possible rewards to
determine the optimal microservice scheme along the way.

5.3 Performance Analysis
In this section, we analyze the performance of the online
algorithm for P1 in terms of the convergence and sample
complexity, which indicate how much experience the algo-
rithm needs to learn for a given task [39].

The essence of Algorithm 2 is to approximate V using
experience learned from environment by updating the value
of Q and then make decisions according to the approximate
value function. First, we prove the convergence of the online
algorithm.

Theorem 4. The approximate state-value function in
Algorithm 2 converges to a value that is at least locally
optimal.

Algorithm 2 Online algorithm

Input: lu(t), e(t), h(t−1), A(pt, τt, wt), the computational
intensity of all edge clouds, and traffic intensity of all
base stations at t

Output: Optimal microservice coordination scheme
1: if e(t) 6= e(t− 1) then
2: s0 = (x(t− 1), h(t− 1)), Q = 0
3: repeat
4: s = s0
5: for i = t, · · · , T do
6: Select a based on ε-greedy policy
7: Observe s′, predict R̂
8: Q(s, a) = Q(s, a) +α[R̂+ γmaxa′ Q(s′, a′)−
Q(s, a)]

9: s = s′

10: end for
11: until Q(s, a) converge
12: x(t) = argmaxaQ(x(t− 1), a)
13: else
14: x(t) = x(t− 1)
15: end if

Proof: We represent the approximate value function Q as
a parameterized linear functional form with weight vector
θ and the corresponding feature vector φ: Q = θTφs. It is
natural to use semi-gradient method updates with a linear
function approximation, the gradient of the approximate
value function with respect to θ is ∇Q = φs. The update
of the approximate value function reduces to the update of
the linear weight vector as follows:

θt+1 = θt + α(Rt+1 + γθTt φt+1 − θTt φt)φt
= θt + α(Rt+1φt − φt(φt − γφt+1)

T θt),
(30)

where we use the notational shorthand φt = φ(st). Once
the approximate value function reaches the steady state, the
expected next weight vector for any θt can be written as
follows:

E[θt+1|θt] = θt + α(b−Aθt)
= (I− αA)θt + αb,

(31)

where b = E[Rt+1φt] and A = E[φt(φt − γφt+1)
T].

When A is positive definite, then α is set to a value that
is smaller than one over the largest value of the diagonal
elements of A, (I − αA) is a matrix whose elements are
between 0 and 1. Then, (I − αA)θt tends to the shrink θt,
and stability is assured. Therefore, the linear approximation
can converge. In the continuing case with γ < 1, matrix A
can be written as

A =
∑
s

µ(s)
∑
a

π(a|s)
∑
s′

pas,s′φ(s)(φ(s)− γφ(s′))T

=
∑
s

µ(s)
∑
s′

p(s′|s)φ(s)(φ(s)− γφ(s′))T

=
∑
s

µ(s)φ(s)(φ(s)− γ
∑
s′

p(s′|s)φ(s′))T

= φTD(I− γP)φ,

(32)

where µ(s) is the stationary distribution under π, P is the
|S × S| probability matrix, and D is the |S × S| diagonal
matrix with µ(s) on its diagonal.

9

From the above formulation, the inner matrix D(I− γP)
is key to determining the positive definiteness of A. Next,
we focus on the positive definiteness of the key matrix.

The row vector of the column sums of D(I− γP) can be
written as

1TD(I− γP) = µT (I− γP)

= µT − γµTP

= µT − γµT

= (1− γ)µ,

(33)

where 1 is the column vector with all components equal
to 1. In addition, µ = PTµ because µ is the stationary
distribution. All components of the key matrix D(I − γP)
are positive; thus, its column sums are nonnegative. The
row sums of the inner matrix are all positive because P
is a stochastic matrix and γ < 1. It is well known, any
matrix M is positive definite if and only if the symmetric
matrix S = M + MT is positive definite [40]. Moreover,
any symmetric real matrix is positive definite if all of its
diagonal entries are positive and greater than the sum of the
corresponding off-diagonal entries [41]. Therefore, key ma-
trix D(I− γP) is positive definite and A is positive definite.
Therefore, the approximate value function can converge. �

Finally, we analyze the sample complexity of Algorith-
m 2, which indicates the number of iterations needed to
achieve the ε-optimal. It is defined as follows.

Definition 3. For any fixed ε > 0, the sample complex-
ity of the exploration of an RL algorithm is the number
of timesteps t such that the policy at time t πt satisfies
V πt(st) < V ∗(st)− ε.

The sample complexity of Algorithm 2 is
O(|S||A|/(ε4(1−γ)8)), where |S| and |A| are the number of
states and number of actions, respectively [39]. This reveals
that the required number of iterations is proportional to
the discount factor γ and is inversely proportional to the
optimal gap ε.

6 EXPERIMENT AND RESULTS

In this section, we compare the proposed Offline Algorithm
and Online Algorithm with several existing coordination
algorithms in terms of the overall delay and migration cost.

6.1 Dataset Description

To evaluate the performance of the proposed algorithms,
two real-world datasets are used in experiments: Shanghai
Telecom’s base station dataset and Shanghai Taxi Track
dataset.

Shanghai Telecom’s base station dataset contains the ex-
act location information of 3,233 base stations and the Inter-
net access information of mobile users that passed through
these base stations. More specifically, the dataset contains
more than 7.2 million records of Internet accesses through
3,233 base stations from 9,481 mobile phones during six
successive months. Each record contains the detailed start
time and end time of the base station access for each mobile
user. Fig. 3 shows the distribution of the 3,233 base stations
in Shanghai, where each node denotes a base station.

The Shanghai Taxi Track dataset contains the tracks of
all 4,328 taxis in Shanghai on February 20, 2007. Each track

Fig. 3: Distribution of all 3,233 base stations in Shanghai. Each
node denotes a base station.

Fig. 4: Tracks of four taxis selected randomly from all taxis in
Shanghai. Each color represents a taxi track over a day.

of a taxi contains its specific location information, recorded
every about one or half minutes over the whole day. In
addition, this dataset contains the direction and instanta-
neous speed of the taxi and whether the taxi is transporting
passengers. Fig. 4 shows four tracks randomly sampled
from the dataset, each distinguished by four different colors.

To measure the performance of our microservice coor-
dination algorithms, we combined the above two datasets
to simulate a scenario where mobile users call services
continuously as they move. Fig. 5 shows how Shanghai
Telecom’s base station dataset and the Shanghai Taxi Track
dataset were combined. Blue points represent the track of
a taxi, green points represent the base stations, red points
represent the edge clouds, and areas filled with different
colors represent the coverage of the edge cloud. The taxi
moves through many base stations and hence moves from
the coverage area of one edge cloud to that of another. This
figure shows the nearby edge cloud switches as the user
moves.

6.2 Experiment Setup
From the 3,233 real base stations in Shanghai, we chose
400 base stations as the placement locations for the edge
clouds using a K-means clustering algorithm [42]. We then
deployed 150 microservices on these edge clouds randomly.

According to [33] [43], each edge cloud is equipped with
multiple CPU cores, and the sum frequency is 25 Ghz. The

10

Edge Cloud

(Location)

Base Station

Taxi

Fig. 5: Detailed track of a taxi.

computation resources that an edge cloud can allocate to
a vehicle follows uniform distribution with fi,t ∈ [0, 25]
Ghz. The computation resources that the Internet cloud can
allocate to a vehicle is 25 GHz. The wireless channel gain gt
is 127+30×log d, where d is the distance between the vehicle
at location lu(t) and its local base station bt ∈ B [44]. The
channel bandwidthW is set to 20 Mhz, the noise powerN is
2×10−13W, and the transmitted power of vehicle S is 0.5 W.
The delay of each link ei,j ∈ E is randomly generated in the
range 5 to 50 ms. The communication delay between any
base station and the Internet cloud is 50 ms. The queuing
time of tasks in each edge cloud are randomly generated
in the range 0 to 5 ms. The downtime of the migration λt is
5ms, and the migration cost µ = d(x(t), x(t−1))×(1−hi,t).

The surrounding environment (e.g., the density of base
stations, the distribution of edge clouds and the microser-
vice configuration) and the track (e.g., the speed) of each
vehicle are different. To improve the reliability of experi-
ment results, we use Monte Carlo method and execute 1000
simulations by optimizing the coordination for a vehicle
in 1000 scenes. We randomly selected the tracks of 1000
taxis to serve as 1000 scenes and only used 30 minutes
of the track for the experiments. All the resulting data in
the experiments are the average values of the vehicles. We
consider that the tasks generated during the entire track
follow a Poisson distribution with a mean of 0.6 Mbits/s, the
computational intensity wt is uniformly distributed within
[500,1000] cycle/bits, and the completion deadline τt is
150 ms. All the experiments were conducted on the same
computer with an Intel(R) Xeon(R) 2.4 GHz processor with
32.0 GB of RAM, using MATLAB with source code.

We compare the proposed Offline Algorithm and Online
Algorithm with four other existing algorithms:

1) 1-step Look-ahead: In this algorithm, we consider
both delay and migration cost, and the vehicle always
selects the edge cloud with the minimum utility value in the
current time slot. It is an offline microservice coordination
algorithm with a 1-step look-ahead time window.

2) Delay Optimal: In this algorithm, we only consider
the delay of the microservices, and the vehicle always se-
lects the edge cloud with minimum delay, disregarding the
migration cost.

3) Nearest Edge Cloud First: In this algorithm, the
vehicle always selects the nearby edge cloud and the com-
putation data are migrated along with the switch of nearby
edge cloud. The microservices are deployed if there are no
microservices in the nearby edge clouds.

4) Random Edge Cloud: In this algorithm, the vehicle
always selects the next edge cloud randomly.

6.3 Effect of the Number of Vehicles on Delay and Mi-
gration Cost
In this subsection, we compare the proposed Offline Algo-
rithm, Online Algorithm, and four comparison algorithms
in terms of the delay and migration cost with respect to the
number of vehicles from 200 to 1,000.

Fig. 6(a) and Fig. 6(b) show the performance of delay and
migration cost, respectively. The Offline Algorithm achieves
the best results for both delay and migration cost due to the
utilization of future system information. Among all the al-
gorithms, the results of the Online Algorithm are the closest
to that of Offline Algorithm. In fact, its migration cost is just
slightly worse than that of the Offline Algorithm. Compared
with the 1-step Look-ahead algorithm, the Online Algorithm
performs better in terms of delay and migration cost be-
cause it considers the impact of future rewards on current
decisions. The delay performances of the Delay Optimal
algorithm and the Nearest Edge Cloud First algorithm are
similar, and they are better than those of the 1-step Look-
ahead algorithm because they only focus on the delay rather
than both the delay and migration cost. In addition, this
causes the migration cost of the Delay Optimal algorithm
and Nearest Edge Cloud First algorithm worse than that
of the 1-step Look-ahead algorithm. The performances of
all the algorithms remain stable as the number of vehicles
increases, which indicates that the Offline Algorithm and
Online Algorithm can be applied to a large number of
vehicles.

6.4 Effect of Switch Times on Delay and Migration Cost
To study the impact of the switch times of the nearby edge
clouds on the performance of Offline Algorithm and Online
Algorithm, we executed the algorithms while fixing the
number of vehicles at 1,000. We then classified the vehicles
according to the switch times of nearby edge clouds in their
track. The distribution of the switch times of vehicles is
shown in Table 1. A higher switch times indicates that the
speed of the vehicle is higher or the deployment of the edge
clouds in the district is more dense, which increases the
likelihood of selecting a new edge cloud.

Fig. 7 shows the performance evaluation results of dif-
ferent algorithms with respect to the increasing switch times
of nearby edge clouds. Fig. 7(a) and Fig. 7(b) illustrate the
effects on the performance of delay and migration cost,
respectively. We can see that the delay and migration cost
of Online Algorithm and Offline Algorithm remain almost
the same as the switch times increases. And the migration
cost of other algorithms increases with increasing switch
times, because the switch between edge clouds leads to the
reselection of microservices and increases the likelihood of
microservice deployment and computation migration. The
overall delay of the Delay Optimal algorithm and 1-step

11

200 400 600 800 1000

Number of Vehicles

1

1.5

2

2.5

3

3.5

O
ve

ra
ll

D
el

ay

Online Algorithm
Offline Algorithm
1-step Look-ahead
Delay Optimal
Nearest Edge Cloud First
Random Edge Cloud

(a) Overall delay

200 400 600 800 1000

Number of Vehicles

0

0.5

1

1.5

2

2.5

3

3.5

4

M
ig

ra
tio

n
C

os
t Online Algorithm

Offline Algorithm
1-step Look-ahead
Delay Optimal
Nearest Edge Cloud First
Random Edge Cloud

(b) Migration cost

Fig. 6: Performance of different algorithms with respect to number of vehicles.

1 2 3 4 5 6 7 8 9 10

Switch Times of Edge Clouds

1

1.5

2

2.5

3

3.5

4

O
ve

ra
ll

D
el

ay

Online Algorithm
Offline Algorithm
1-step Look-ahead
Delay Optimal
Nearest Edge Cloud First
Random Edge Cloud

(a) Overall delay

1 2 3 4 5 6 7 8 9 10

Switch Times of Edge Clouds

0

1

2

3

4

5

6

7

8

M
ig

ra
tio

n
C

os
t

Online Algorithm
Offline Algorithm
1-step Look-ahead
Delay Optimal
Nearest Edge Cloud First
Random Edge Cloud

(b) Migration cost

Fig. 7: Performance of different algorithms with respect to the switch times

TABLE 1: Distribution of the switch times of vehicles

Switch
times

1 2 3 4 5 6 7 8 9 10

Number of
vehicles

96 145 166 157 137 100 76 57 27 12

Look-ahead algorithm slightly decreases as the switch times
increases. This is because the increasing instances of rese-
lection diminish the impact of future reward. The migration
cost of the Nearest Edge Cloud First algorithm increases
rapidly because the service instance must be migrated if
the nearby edge cloud does not host the microservices. The
migration cost of the Nearest Edge Cloud First algorithm
also increases because it does not take into account the
migration cost.

In summary, in a smart city, e.g., Shanghai, the Online
Algorithm can provide vehicles better experience than the
other four representative approaches in terms of delay and

migration cost. It is close to the globally optimal perfor-
mance provided by the Offline Algorithm.

7 CONCLUSION

In this paper, we have investigated the microservice coordi-
nation problem in mobile edge computing environments, to
select optimal edge clouds for performing the microservices
as a mobile user moves. To reduce the overall delay and
migration cost, we have proposed an offline algorithm to
find the optimal microservice coordination when future
system information is available. Furthermore, we have also
proposed an online algorithm that does not require fu-
ture system information. Through theoretical analysis, it
is proved that the offline algorithm can find the optimal
solution while the online algorithm can achieve near op-
timal performance. Moreover, based on two real datasets,
the experiments are conducted, which demonstrate that the

12

proposed online algorithm outperforms several representa-
tive algorithms in terms of delay and migration cost, and
the performance is close to that of the globally optimal
solutions provided by the offline algorithm. For the future
work, we will jointly investigate microservice coordination
and load balancing among microservices in the multiuser
mobile edge computing systems.

REFERENCES

[1] A. Sill, “The design and architecture of microservices,” IEEE Cloud
Computing, vol. 3, no. 5, pp. 76–80, 2016.

[2] L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient Live Migration of Edge
Services Leveraging Container Layered Storage,” IEEE Transaction-
s on Mobile Computing, 2018, DOI: 10.1109/TMC.2018.2871842.

[3] P. D. Francesco, I. Malavolta, and P. Lago, “Research on archi-
tecting microservices: Trends, focus, and potential for industrial
adoption,” in proceeding of 2017 IEEE International Conference on
Software Architecture (ICSA), 2017, pp. 21–30.

[4] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual Understand-
ing of Microservice Architecture: Current and Future Directions,”
ACM SIGAPP Applied Computing Review, vol. 17, no. 4, pp. 29–45,
2018.

[5] N. Alshuqayran, N. Ali, and R. Evans, “A Systematic Mapping
Study in Microservice Architecture,” in prceeding of IEEE 9th In-
ternational Conference onService-Oriented Computing and Applications
(SOCA), 2016.

[6] M. Li, R. Yu, P. Si, and Y. Zhang, “Energy-efficient Machine-
to-Machine (M2M) Communications in Virtualized Cellular Net-
works with Mobile Edge Computing (MEC),” IEEE Transactions on
Mobile Computing, 2018, DOI: 10.1109/TMC.2018.2865312.

[7] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[8] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Cooper-
ative Edge Caching in User-Centric Clustered Mobile Networks,”
IEEE Transactions on Mobile Computing, vol. 17, no. 8, pp. 1791 –
1805, 2017.

[9] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks,”
IEEE Transactions on Cloud Computing, vol. 5, no. 4, pp. 725–737,
2017.

[10] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. Shen,
“Content Popularity Prediction Towards Location-Aware Mobile
Edge Caching,” IEEE Transactions on Multimedia, pp. 1–1, 2018.

[11] X. Ma, S. Wang, S. Zhang, P. Yang, C. Lin, and X. S. Shen, “Cost-
efficient resource provisioning for dynamic requests in cloud
assisted mobile edge computing,” IEEE Transactions on Cloud Com-
puting, pp. 1–1, 2019.

[12] Y. Wang, W. Shi, and M. Hu, “Virtual Servers Co-migration for
Mobile Accesses: Online Versus Off-line,” IEEE Transactions on
Mobile Computing, vol. 14, no. 12, pp. 2576–2589, 2015.

[13] K. Ha, Y. Abe, Z. Chen, W. Hu, B. Amos, P. Pillai, and M. Satya-
narayanan, “Adaptive VM handoff across cloudlets,” Technical
Report CMU-CS-15–113, CMU School of Computer Science, 2015.

[14] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices archi-
tecture enables devops: Migration to a cloud-native architecture,”
IEEE Software, vol. 33, no. 3, pp. 42–52, 2016.

[15] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari,
“Open issues in scheduling microservices in the cloud,” IEEE
Cloud Computing, vol. 3, no. 5, pp. 81–88, 2016.

[16] Y. Niu, F. Liu, and Z. Li, “Load balancing across microservices,”
in proceedings of 4th IEEE International Conference on Computer
Communications (ICCC), 2018, pp. 1–9.

[17] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis,
“Live service migration in mobile edge clouds,” IEEE Wireless
Communications, vol. 25, no. 1, pp. 140–147, 2018.

[18] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-
clouds,” Performance Evaluation, vol. 91, pp. 205 – 228, 2015, special
Issue: Performance 2015.

[19] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K.
Leung, “Dynamic service placement for mobile micro-clouds with
predicted future costs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 4, pp. 1002–1016, 2017.

[20] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge:
Mobility-aware dynamic service placement for mobile edge com-
puting,” IEEE Journal on Selected Areas in Communications, vol. 36,
no. 10, pp. 2333–2345, Oct 2018.

[21] B. Wu, F. N. Iandola, P. H. Jin, and K. Keutzer, “Squeezedet:
Unified, small, low power fully convolutional neural networks for
real-time object detection for autonomous driving.” in proceedings
of 2017 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 2017, pp. 446–454.

[22] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. S. Shen,
“Energy efficient dynamic offloading in mobile edge computing
for internet of things,” IEEE Transactions on Cloud Computing, pp.
1–1, 2019.

[23] Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, and X. S. Shen, “Toward
efficient content delivery for automated driving services: An edge
computing solution,” IEEE Network, vol. 32, no. 1, pp. 80–86, 2018.

[24] C. Guerrero, I. Lera, and C. Juiz, “Resource optimization of con-
tainer orchestration: a case study in multi-cloud microservices-
based applications,” The Journal of Supercomputing, vol. 74, no. 7,
pp. 2956–2983, 2018.

[25] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A.
Chan, “Multi-objective scheduling of micro-services for optimal
service function chains,” in proceedings of 2017 IEEE International
Conference on Communications (ICC), 2017, pp. 1–6.

[26] H. Yao, C. Bai, D. Zeng, Q. Liang, and Y. Fan, “Migrate or not?
exploring virtual machine migration in roadside cloudlet-based
vehicular cloud,” Concurr. Comput. : Pract. Exper., vol. 27, no. 18,
pp. 5780–5792, 2015.

[27] A. Ksentini, T. Taleb, and M. Chen, “A markov decision process-
based service migration procedure for follow me cloud,” in pro-
ceedings of IEEE International Conference on Communications (ICC),
2014, pp. 1350–1354.

[28] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge-clouds,” in proceedings
of 14th IFIP Networking Conference (NETWORKING), 2015, pp. 1–9.

[29] T. Taleb, A. Ksentini, and P. Frangoudis, “Follow-me cloud: When
cloud services follow mobile users,” IEEE Transactions on Cloud
Computing, pp. 1–1, 2018.

[30] J. Plachy, Z. Becvar, and E. C. Strinati, “Dynamic resource alloca-
tion exploiting mobility prediction in mobile edge computing,” in
proceedings of IEEE 27th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC), 2016, pp. 1–6.

[31] C. Zhang and Z. Zheng, “Task migration for mobile edge comput-
ing using deep reinforcement learning,” Future Generation Comput-
er Systems, vol. 96, pp. 111 – 118, 2019.

[32] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration mod-
eling and learning algorithms for containers in fog computing,”
IEEE Transactions on Services Computing, pp. 1–1, 2018.

[33] Y. Sun, S. Zhou, and J. Xu, “EMM: energy-aware mobility man-
agement for mobile edge computing in ultra dense networks,”
IEEE Journal on Selected Areas in Communications, vol. 35, no. 11,
pp. 2637–2646, 2017.

[34] S. Cao, Y. Wang, and C. Xu, “Service migrations in the cloud for
mobile accesses: A reinforcement learning approach,” in proceed-
ings of 12th International Conference on Networking, Architecture, and
Storage (NAS), 2017, pp. 1–10.

[35] H. Assasa, S. V. Yadhav, and L. Westberg, “Service mobility in
mobile networks,” in proceedings of IEEE 8th International Conference
on Cloud Computing (ICCC), 2015, pp. 397–404.

[36] R. A. Howard, “Dynamic programming,” Management Science,
vol. 12, no. 5, pp. 317–348, 1966.

[37] L. Chiaraviglio, F. Cuomo, M. Listanti, E. Manzia, and M. Santucci,
“Fatigue-aware management of cellular networks infrastructure
with sleep modes,” IEEE Transactions on Mobile Computing, vol. 16,
no. 11, pp. 3028–3041, 2017.

[38] J. Li, Q. Liu, P. Wu, F. Shu, and S. Jin, “Task offloading for uav-
based mobile edge computing via deep reinforcement learning,”
in proceedings of IEEE/CIC International Conference on Communica-
tions(ICC), 2018, pp. 798–802.

[39] A. L. Strehl, L. Li, and M. L. Littman, “Reinforcement learning in
finite MDPs: PAC analysis,” Journal of Machine Learning Research,
vol. 10, pp. 2413–2444, 2009.

[40] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine learning, vol. 3, no. 1, pp. 9–44, 1988.

[41] R. S. Varga, Matrix iterative analysis. Springer Science & Business
Media, 2009, vol. 27.

13

[42] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient algorithms
for capacitated cloudlet placements,” IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 10, pp. 2866–2880, 2016.

[43] Y. Xiao and M. Krunz, “QoE and power efficiency tradeoff for fog
computing networks with fog node cooperation,” in proceedings
of IEEE Conference on Computer Communications (INFOCOM), 2017,
pp. 1–9.

[44] C. Niu, Y. Li, R. Q. Hu, and F. Ye, “Fast and efficient radio resource
allocation in dynamic ultra-dense heterogeneous networks,” IEEE
Access, vol. 5, pp. 1911–1924, 2017.

Shangguang Wang received his PhD degree at
Beijing University of Posts and Telecommunica-
tions in 2011. He is a professor and Vice-Director
at the State Key Laboratory of Networking and
Switching Technology (BUPT). He has published
more than 100 papers, and played a key role at
many international conferences, such as general
chair and PC chair. His research interests in-
clude service computing, cloud computing, and
mobile edge computing. He is a senior member
of the IEEE, and the Editor-in-Chief of the Inter-

national Journal of Web Science.

Yan Guo received the bachelor degree in math-
ematics and applied mathematics from Beijing
University of Posts and Telecommunications in
2016. Currently, She is a PhD candidate in com-
puter science at the State Key Laboratory of Net-
working and Switching Technology, Beijing Uni-
versity of Posts and Telecommunications. Her re-
search interests include Service Computing and
Mobile Edge Computing.

Ning Zhang is an Assistant Professor at Texas
A&M University-Corpus Christi, USA. He re-
ceived the Ph.D degree from University of Wa-
terloo, Canada, in 2015. After that, he was a
postdoc research fellow at University of Waterloo
and University of Toronto, Canada, respectively.
He serves/served as an associate editor of IEEE
Access and IET Communication, an area editor
of Encyclopedia of Wireless Networks (Springer)
and Cambridge Scholars, a guest editor of Wire-
less Communication and Mobile Computing, In-

ternational Journal of Distributed Sensor Networks, and Mobile Informa-
tion System. He also served as the workshop chair for the first IEEE
Workshop on Cooperative Edge. He is a recipient of the Best Paper
Awards at IEEE Globecom 2014 and IEEE WCSP 2015, respectively.
His current research interests include next generation mobile networks,
physical layer security, machine learning, and mobile edge computing.

Peng Yang received his Ph.D. and B.E. de-
grees from School of Electronic Information and
Communications, Huazhong University of Sci-
ence and Technology, Wuhan, China, in 2013
and 2018, respectively. He is currently a post-
doctoral fellow in the Department of Electrical
and Computer Engineering, University of Water-
loo, Ontario, Canada. His research focuses on
software defined networking, network function
virtualization and mobile edge computing.

Ao Zhou received the B.S., M.S. and P.H.D de-
grees in Beijing University of Posts and Telecom-
munications, Beijing, China, in 2009, 2012 and
2015, respectively. She is currently an Associate
Professor with State Key Laboratory of Network-
ing and Switching Technology, Beijing University
of Posts and Telecommunications. She has pub-
lished 20+ research papers. She played a key
role at many international conferences, such as
PC chair. Her research interests include Cloud
Computing and Edge Computing.

Xuemin (Sherman) Shen received the Ph.D.
degree in electrical engineering from Rutgers
University, New Brunswick, NJ, USA, in 1990.
He is currently a University Professor with the
Department of Electrical and Computer Engi-
neering, University of Waterloo, Canada. His re-
search focuses on resource management in in-
terconnected wireless/wired networks, wireless
network security, social networks, smart grid,
and vehicular ad hoc and sensor networks. He
is a registered Professional Engineer of Ontario,

Canada, an Engineering Institute of Canada Fellow, a Canadian Acade-
my of Engineering Fellow, a Royal Society of Canada Fellow, and a
Distinguished Lecturer of the IEEE Vehicular Technology Society and
Communications Society. Dr. Shen received the James Evans Avant
Garde Award in 2018 from the IEEE Vehicular Technology Society, the
Joseph LoCicero Award in 2015 and the Education Award in 2017 from
the IEEE Communications Society. He has also received the Excellent
Graduate Supervision Award in 2006 and the Outstanding Performance
Award in 2004, 2007, 2010, and 2014 from the University of Waterloo
and the Premiers Research Excellence Award (PREA) in 2003 from the
Province of Ontario, Canada. He served as the Technical Program Com-
mittee Chair/Co-Chair for the IEEE Globecom16, the IEEE Infocom14,
the IEEE VTC10 Fall, the IEEE Globecom07, the Symposia Chair for the
IEEE ICC10, the Tutorial Chair for the IEEE VTC11 Spring, the Chair
for the IEEE Communications Society Technical Committee on Wireless
Communications, and P2P Communications and Networking. He is the
Editor-in-Chief of the IEEE INTERNET OF THINGS JOURNAL and the
Vice President on Publications of the IEEE Communications Society.

