
IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX/XX 2020 1

Path Selection for Seamless Service Migration in
Vehicular Edge Computing

Jinliang Xu, Xiao Ma∗, Member, IEEE, Ao Zhou, Member, IEEE, Qiang Duan, Member, IEEE,
Shangguang Wang, Senior Member, IEEE

Abstract—Mobile edge computing provisions computing and
storage resources by deploying edge servers (ESs) at the edge
of the network to support ultra-low delay and high bandwidth
services. To ensure QoS of latency-sensitive services in vehicular
networks, service migration is required to migrate data of the
ongoing services to the closest ES seamlessly when users move
across different ESs. To achieve seamless service migration, path
selection is proposed to obtain one or more paths (consisting of
several switches and ESs) to transfer service data. We focus on
the following problems about path selection: Where to implement
path selection? How to coordinate interests of mobile users
(i.e., vehicles) and network providers since they have conflicting
interests during path selection? How to ensure seamless service
migration during migration of vehicles? To address the above
problems, this paper investigates path selection for seamless
service migration. We propose a path selection algorithm to
jointly optimize both interests of network plane (i.e., cost for
network providers) and service plane (i.e., QoE of users). We
first formulate it as a multi-objective optimization problem and
further prove theoretically that the proposed algorithm can
give a weakly Pareto optimal solution. Moreover, to improve
the scalability of the proposed algorithm, a distance-based filter
strategy is designed to eliminate undesired switches in advance.
We conduct experiments on two synthesized datasets and the
results validate the effectiveness of the proposed algorithm.

Index Terms—mobile edge computing, vehicular networks,
service migration, path selection, Pareto optimal.

I. INTRODUCTION

Mobile edge computing (MEC) supports ultra-low delay
and high bandwidth services for vehicular networks

by deploying edge servers (ESs), which is also named as
micro-clouds [1] or MEC hosts [2], at the edge of network.
While vehicles [3], [4] and smart phones [5] always move
around [6], [7], [8], limited coverage of each ES can result
in dramatic drop of QoS or even service interruption [1]. To
this end, stateful service data needs to be transferred from
the source ES to the target one (the closest one), i.e., service
migration in vehicular edge computing [2]. If the incurred
service interruption lasts no more than a specific time threshold
so that users cannot directly observe its occurrence, it is
considered as seamless service migration [9]. An application

Jinliang Xu, Xiao Ma, Ao Zhou, and Shangguang Wang are with the
State Key Laboratory of Networking and Switching Technology, Beijing
University of Posts and Telecommunications. E-mail: jlxu@bupt.edu.cn; max-
iao18@bupt.edu.cn; aozhou@bupt.edu.cn; sgwang@bupt.edu.cn. Xiao Ma is
the corresponding author.

Qiang Duan is with the Information Science and Technology Depart-
ment, The Pennsylvania State University, Abington, PA 19001. E-mail:
qduan@psu.edu.

xxxx-xxxx/0x/$xx.00 2020 IEEE Published by the xxxx xxxx

ES4
S2

S3
S5

S7

S6

S4

S1 BS6

BS7
BS2

BS3

BS1

BS5

BS4

ES2

ES3

ES5

Target ES

ES1

Source

ES

ES / edge server BS / base station S / network switch

Fig. 1. Service migration and data transferring path as a vehicle moves along
the road in vehicular edge computing. A network link may exists between two
network switches or ESs, and the ones with orange color make up a feasible
data transferring path in a service migration from source ES1 to target ES5.

scenario of service migration of a moving vehicle in vehicular
edge computing is exemplified in Fig. 1. When the vehicle
moves from the left to right along the road, the network path
changes from BS1-ES1 to ES1-S1-S2-S5-S7-BS6, ES1-S1-
S2-S4-S6-S7-BS6, etc. The network distance becomes much
longer than the beginning, resulting in network QoS degrada-
tion for users [10]. Service migration is promising to address
this problem in vehicular edge computing. By migrating the
ongoing service data from ES1 to the closest ES5, the network
path reduces to BS6-ES5. During service migration, at least
one feasible transferring path should be determined before
transferring service data (i.e., path selection), e.g., ES1-S1-
S2-S5-S7-ES5, ES1-S1-S2-S4-S6-S7-ES5 or ES1-S1-S3-S5-
S7-ES5. Path selection attempts to transfer data efficiently
from the source ES to the target one, by properly selecting
one or more feasible transferring paths.

We propose to implement path selection logic in the traffic
steering module of the 5G MEC architecture. As shown in
Fig. 2, 5G MEC provides a unified control for networks and
services through software defined network (SDN) and network
function virtualization (NFV) technology [11], [12]. Traffic
steering serves as a centralized entity to control all of the ESs
and network switches in the vehicular edge computing system,
and it is proposed to route traffic of application instances in 5G
MEC. SDN controller directs the switches to deliver network
services wherever they are needed, regardless of the specific
connections between network nodes. It is quite different from
traditional network architecture, in which individual network
switches make traffic decisions based on their configured
routing tables, i.e., in a decentralized decision-making way. An
ES in 5G MEC includes a user plane function (UPF) [2], [13].
UPF is a fundamental component of 5G. And it represents the

2 IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX/XX 2020

S2

S3
S5

S7

S6

S4

S1

traffic steering

center
ES / edge server

network switch

collect /control

information

Fig. 2. Traffic steering of 5G MEC connects to multiple ESs and network
switches, collect information from them, and route traffic according to the
results of the proposed path selection algorithm to transfer data for service
migration.

evolutionary trend that separates the control plane and user
plane. So it works well with application interfaces that are
implemented in SDN manner. As a result, by connecting to the
UPF of each ES, traffic steering can collect resource demand
(including network, computing and storage resource, etc.) of
mobile users. Moreover, it can also obtain the load information
of every network switch in the core network, and then route
traffic among ESs and network switches according to estab-
lished rules. In short, traffic steering of 5G MEC can realize
the function of path selection during service migration to select
the best data transferring paths, and then transfer service data
according to the found transferring paths. However, there are
problems remain to be resolved: 1) Path selection in service
migration concerns two parameters, namely QoS for mobile
users (e.g., delay of each network link), and network cost from
network providers (price of each network link). Mobile users
and network providers are two rational stakeholders, and they
have conflicting interests. So it is needed to research how to
make a balance between them; 2) While transferring service
data of one service, if more than one transferring paths work
simultaneously, more data will be transferred to the target ES
within given time period. So it is important to know how many
transferring paths should be selected, and how to find them;
3) If data transferring time in a service migration is too large,
mobile users will observe QoS degradation or even service
interruption [9]. The ideal result is seamless service migration,
and its transferring time is less than a threshold time. So it is
important to research how to find a set of transferring paths
that need time less than threshold time to transfer all of the
service data.

Our contributions are summarized as follows. 1) We propose
to use traffic steering in 5G MEC as the platform to run
the proposed path selection algorithm in a SDN manner;
2) We build a two-layer system model (namely service layer
and network layer), and propose to build them into a single
mathematic model jointly like a multi-objective optimization.
Service plane focuses on minimizing the time cost for trans-
ferring data from source to target ES [9]. The second layer is
network plane. For a network service provider, the target of
path selection is how to reduce the network cost in the case of
service migration [14]; 3) We combine parameters of the two-

layer system model by weighted sum, and prove that it can
give a weakly Pareto optimal solution of the original problem;
4) We choose a set of paths instead of just one to improve
efficiency of data transferring. The proposed algorithm aims
to choose the best set of available transferring paths that can
minimize the total transferring time with limited bandwidth
of each network connection; 5) Time threshold for seamless
service migration is introduced in the proposed path selection
algorithm. It makes proper path selection for vehicular edge
computing as mobile users are more sensitive to transferring
time.

The remainder of this paper is organized as follows. In
Section II we introduce in detail the proposed path selection
algorithm on delay and price in service migration of mobile
edge computing. Section III describes our experimental setup
and results on two synthesized datasets, and validates the
effectiveness of the proposed algorithm. A review of related
work is given in Section IV. Finally, the conclusion and future
work are laid out in Section V.

II. PATH SELECTION ALGORITHM IN TRAFFIC STEERING

We detail the proposed path selection algorithm, the analysis
of the Pareto optimal solution and the scalability problem.

A. Preliminary

We introduce two kinds of parameters, one for service plane
and another for network plane on a 5G MEC network. As
shown in Fig. 1, there are several nodes (ESs or network
switches) on a transferring path from source ES to target ES. A
connection between two neighboring nodes on a path is called
a network link, e.g., l1,1 between ES1 and network switch S1,
l1,3 between S1 and S3. So transferring path ES1-S1-S3-S5-
S7-ES5 can be represented by several sequentially connected
network links as (l1,1, l1,3, l3,5, l5,7, l7,5). For two arbitrary
nodes i and j with direct connection with each other, their
network link li,j has three attributes, namely bandwidth bi,j ,
delay ti,j (i.e., the time for one bit to transmit from one end of
li,j to the other.) and price pi,j (i.e., the money to be paid for
one unit of data volume transferred on li,j .). In this work, we
consider delay t as a service plane parameter because users are
interested in network delay as one important QoS, and price
p as a network plane parameter because network providers
are interested in reducing network cost when maintaining a
network.

As price and delay are items on two different planes and not
easy to optimize simultaneously, by involving them together
we construct a new parameter named network cost. Both
of delay and price of the network links should be taken
into account when we build the model for joint optimization
of network plane and service plane. First we normalize the
delay and price attributes using feature scaling. And it brings
all values into the range [0, 1]. The normalizing process is
formulated as follows:

t′i,j =
ti,j − tmin

tmax − tmin
, p′i,j =

pi,j − pmin

pmax − pmin
, (1)

where symbols tmax and tmin are the maximum and minimum
values of the delay of the network links respectively, then pmax

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX/XX 2020 3

and pmin are the maximum and minimum values of the price
of the network links respectively, at last t′i,j and p′i,j are the
delay and price values after being normalized. Then we build
the concept of network cost ci,j = wtt

′
i,j + wpp

′
i,j for each

network link. Network delay, price and the newly constructed
cost can be written down in matrix form, i.e., delay matrix T ,
price matrix P , and cost matrix C. T is as follows:

T =

0 t′1,2 · · · t′1,N
t′2,1 0 · · · t′2,N

...
...

. . .
...

t′N,1 t′N,2 · · · 0

 , (2)

where N denotes the total number of nodes except for
mobile devices (including ESs and network switches). P is
constructed in the same way as T . Note that delay matrix T
and price matrix P are not symmetric (i.e., not necessarily
t′i,j = t′j,i and p′i,j = p′j,i for arbitrary i, j pair) due to the
fact that the network links are not necessarily symmetric [15].
Moreover, the matrices T and P may be highly sparse as most
computation entities are not directly connected. The building
of cost matrix C is by:

C = wtT + wpP, (3)
where wt + wp = 1, wt, wp ∈ [0, 1], C is the cost matrix
containing N × N elements, and wt and wp are the weights
of delay and price respectively.

B. Path Selection Algorithm

Transferring time is another parameter of service plane, and
it introduces the time threshold for seamless service migration.
The former is relative to the data volume to be transferred and
the bandwidth of every network link on a transferring path, and
the latter is relative to the bad impact on the QoS if the data
transferring time is too large in a service migration case. In
some mobile applications like digital reading, if the time is
less than 0.1s, the mobile user is imperceptible; while if the
respond time is in range (0.1, 1)s, the mobile user will find
that it is difficult to maintain user’s train of thought; while if
the respond time is larger than 10s, the mobile user will find
that it is difficult to feel appropriately connected [9], [16]. So
we use symbol T̊ to denote the time threshold for seamless
service migration. If the data transferring time is less than T̊ ,
the possible QoS degradation by service migration will not
perceived by mobile users. Note that the transferring time is
different from the network delay time, which means the time
for a bit to travel from the source to the target network node.

The path selection algorithm is shown in Alg. 1. The main
idea is to find a new transferring path in each cycle and then
update the remaining bandwidth resource of each link on this
path, until these paths together can transfer all data volume in
time T̊ ; if no new path can be found in a cycle, we relax T̊
to make sure that in the new time period all data volume can
be transferred. Dijkstra algorithm is adopted in each cycle to
find a transferring path between the source ES and the target
server, and the path has the minimum sum cost of its all links
(Lines 2-3) [17]. Dijkstra is feasible because the cost of a
network link (Eq. 3) is relative to its delay and price, and both
of them are additive. Lines 5-7 describe the relaxation of time

Algorithm 1: Path selection algorithm on delay and price
in service migration.

Input: Os, source ES; Od, target ES; Q, the data volume
needed to be transferred from Os to Od; T̊ , the
time threshold for seamless service migration; the
set of network links {li,j = 〈bi,j , ci,j〉}, of which
the subscript i, j represents an arbitrary pair of
ESs or network switches;

Output: The best set of transferring paths S; the
estimated transferring time t̊.

1 Initialize the set of transferring paths S ← {};
2 consider the cost matrix defined network of network

switches between Os and Od as a weighted graph;
3 apply Dijkstra algorithm to the weighted graph to find

the shortest path s from Os to Od;
4 if s not exists then
5 compute B ←

∑
s∈S bmin

s , where bmin
s means the

bandwidth of a transferring path s in set S;
6 compute the practical transferring time t̊← Q/B,

where Q is the data volume to be transferred;
7 return S and t̊;

8 update S ← S ∪ {s};
9 get bmin

s , i.e., bandwidth of s as Definition 1 ;
10 if bmin

s T̊ > Q then
11 return S and T̊ ;

12 else
13 subtract bmin

s from the bandwidth of each link on s,
e.g., for li,j ∈ s, we have bi,j ← bi,j − bmin

s ;
14 delete all of links with zero bandwidth value;
15 if | S |= 1 then
16 update Q′ ← Q− bmin

s × T̊ ;

17 else
18 update Q′ ← Q′ − bmin

s × T̊ ;

19 goto line 2;

threshold T̊ . As the initial time threshold is the maximum time
limit for a seamless service migration, its relaxation means
that seamless service migration cannot be realized. The task
of relaxation operation is to find the minimum time period
that can transfer all data volume. t̊ in Line 6 is the minimum
practical transferring time. This is ensured by Proposition 1.
Lines 13-18 show how to update the bandwidth resource of
each network link on the new found path in each cycle. Line 10
means the condition that the found paths together can transfer
all data volume in time T̊ . Line 4 means the condition that no
new path can be found in a cycle.

Definition 1 (Bandwidth of Transferring Path). A transferring
path is made up of several sequentially connected network
links. Every network link has its bandwidth value, and the
bandwidths of different networks may be different. We define
the bandwidth of the transferring path as the minimum band-
width value of all network links on the transferring path.

Proposition 1. t̊ = Q/
∑

s∈S bs is the minimal time cost
needed to transfer a piece of Q-sized data by making use

4 IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX/XX 2020

of a set of independent transferring paths denoted by symbol
S, where bs means bandwidth of transferring path s.

Proof 1: Given an arbitrary transferring path, let it be
s1 ∈ S, the transferring time t1 on it is less than t̊, i.e., t1 < t̊.
According to pigeonhole principle [18], there is at least one
transferring path s with transfer time of ts ≥ Q−b1t1∑

s∈S bs−b1 >

Q−b1T̊∑
s∈S bs−b1 = t̊. That is to say, there will never be a case

where the transferring time of all paths are less than t̊. So t̊
is the minimal time cost needed.

The best case of the complexity of Alg. 1 is O(N2), and
the worst case is O(N4). As we know, the complexity of
Dijkstra algorithm is O(N2) if the number of nodes in the
input graph is N . The largest number of links among N node
is 1

2N(N−1). In the best case, the first transferring path meets
the needs, which results in complexity of O(N2). While in
worst case, in each cyle just one link is deleted, until all links
are gone. So the complexity will be O(N4). If we denote the
numer of found transferring path as K, the complexity of Alg.
1 can be written as O(KN2).

In this work, only one path selection is to be made during
one time-slot. It cannot coordinate the multiple requirements
very well. If more than one user migrates the edge servers
simultaneously, the output of the algorithm will be not neces-
sarily ideal. The reason is that as the network resources (e.g.,
network bandwidth) are always limited, if two users of two
service migration requirements are close enough, they may
act on each other. However, we think this case will not always
happen. The reason is as follows: as we have mentioned, the
time slot is small enough. So the moving distance of a user
during this time slot will be very small. The input network
resources needed for one service migration requirement by
the path selection algorithm are always in a small area. In
a small area, the possibility of more than one requirements
is very unlikely. Moreover, if we consider coordination of
multiple requirements, the needed computation time will grow
rapidly. If the time needed exceeds the size of the time slot,
the output of the algorithm will be unreliable. While in vehicle
edge computing, the time slot must be small enough to ensure
the real-time performance.

C. Pareto Optimal Solution Analysis

Although the path selection algorithm does not take delay
and price directly as inputs, it balances both demands from
network plane and service plane because of Eq. 3. In this
section we discuss its relation from optimizing delay and price
separately.

First we give definitions of two kinds of problems, and
then we discuss their relations. In Alg. 1, we apply Dijkstra
algorithm to the weighted graph to find the shortest path s from
source ES to target ES. The problem of Dijkstra algorithm can
be formulated by the following (Problem I):

s = arg min
s∈S

OC(s), (4)

where symbol OC(s) denotes a function that applies Dijkstra
algorithm on the weighted graph C to find a shortest path
s. Eq. 3 shows that cost matrix C is a weighted sum of
delay matrix T and price matrix P with weights wt and

wp respectively. As the Dijkstra algorithm is totally a linear
function, Problem I can be transformed into a weighted sum
of two sub-problems by the following:

s = arg min
s∈S

wtOT (s) + wpOP (s). (5)

We define a multi-objective optimization problem as follows
(Problem II):

s = arg min
s∈S

[OT (s), OP (s)] , (6)

which means finding a transferring path s ∈ S that is
able to minimize OT (·) and OP (·) at the same time. Note
that Eq. 5 and Eq. 4 are equal, and they are two kinds of
expressions of Problem I. While Eq. 6, i.e., Problem II, is quite
different from Problem I. So Eq. 5 can not be transformed into
Eq. 6 directly. A multi-objective problem is concerned with
mathematical optimization problems involving more than one
objective function to be optimized simultaneously. Problem
II means finding a transferring path s ∈ S that is able to
minimize OT (·) and OP (·) at the same time. So it is a multi-
objective problem.

In this work function OC is not written down with a function
expression. However, Dijkstra algorithm is determined. And
the proposed Alg. 1 is determined. So as long as the involved
network parameters are fixed, including the network topology,
the bandwidths, price and cost of every involved network link,
function OC will be determined. The algorithm runs in a time
slot that is much less than the time threshold, and in this time
slot the data is transferred according to the output paths set. As
the time slot is quite short, the involved network parameters
can be considered as constant during the data transferring. The
time slot can be short enough as a data transferring task can
be completed in more than one time slot.

In the following, we give the definitions of Pareto optimal
solution and weakly Pareto optimal solution. Next we study
the relations between the solutions of Problem I and Problem
II. They are demonstrated by two propositions (Propositions
2 and 3) and the proofs following each of them.

Definition 2 (Pareto Optimal Solution). s∗ ∈ S is said to be
a Pareto optimal solution of Problem II, if and only if there
does not exist another s ∈ S, such that OT (s) ≤ OT (s∗) and
OP (s) ≤ OP (s∗).

Definition 3 (Weakly Pareto Optimal Solution). s∗ ∈ S is said
to be a Pareto optimal solution of Problem II, if and only if
there does not exist another s ∈ S, such that OT (s) < OT (s∗)
and OP (s) < OP (s∗).

Proposition 2. The solution of Problem I is a weakly Pareto
optimal solution of Problem II.

Proof 2: Let ŝ ∈ S be a solution of Problem I. Let
us suppose that it is not a weakly Pareto optimal solution of
Problem II. In this case, there exists a solution s ∈ S such
that OT (s) < OT (ŝ) and OP (s) < OP (ŝ). According to the
assumptions set to the weights wt ≥ 0 and wp ≥ 0 for at
least one is larger than zero. Thus wtOT (s) + wpOP (s) <
wtOT (ŝ)+wpOP (ŝ). This is a contradiction to the assumption
that ŝ is a solution of Problem I. Or the solution ŝ must be a
weakly Pareto optimal solution of Problem II.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX/XX 2020 5

Proposition 3. The solution of Problem I is a Pareto optimal
solution of Problem II if the weights of the two sub-problems
in Problem II are both positive, i.e., wt > 0 and wp > 0.

Proof 3: Let ŝ ∈ S be a solution of Problem I with
positive weights. Let us suppose that is not Pareto optimal.
This means that there exists a solution s ∈ S such that
OT (s) ≤ OT (ŝ), OP (s) ≤ OP (ŝ) and OT (s) < OT (ŝ),
OP (s) < OP (ŝ) holds for at least one. Since wt > 0 and wp >
0, we have wtOT (s) + wpOP (s) < wtOT (ŝ) + wpOP (ŝ).
While this result contradicts the assumption that ŝ is a solution
of Problem I. That means solution ŝ must be Pareto optimal.

From the above analysis, we find that the weighted sum in
Eq. 3 is reasonable for traffic steering of service migration
in vehicular edge computing. Concretely, the method cannot
find a transferring path that can at the same time minimize
delay and price, though, it can ensure a weakly Pareto optimal
solution. Further, if both of the weights are positive values, it
can find a Pareto optimal solution.

D. Scalability Problem using an Elliptic Region Based Method

The scalability problem arises when the coverage of vehic-
ular network expands. Suppose the number of network nodes
per unit area in urban area is constant, and the length of the
city is d, then the number N is proportional to d2. The time
complexity of Alg. 1 can also be written down as O(Kd4),
and O(d8) at worst. The high complexity will result in several
terrible consequences when mobile users moves in a city:
1) executing the path selection algorithm may be prohibitively
expensive (e.g., time cost and energy consumption); 2) it costs
much more time to collect information; 3) as the cost time
become larger, the accuracy of the path selection algorithm
will be heavily discounted because the time slot for Alg. 1
must be small enough.

To relieve this problem, an elliptic region method is adopted
to filter out the inappropriate network nodes before executing
the path selection algorithm. In mathematics, an ellipse is a
plane curve surrounding two focal points, such that for all
points on the curve, the sum of the two distances to the focal
points is a constant; for any point outside the curve, the sum
distance is larger than the constant; and for an any point
inside the curve, the sum distance is less than the constant
[19]. Specifically, treat the source and target ESs in a service
migration as two elliptical focuses; then use them to draw
an ellipse; only nodes inside the ellipse are selected as the
input of the path selection algorithm. It can help to filter out
most of the network nodes, and the algorithm will scale well
when deployment density of the nodes is high or the distance
between source to target ESs is large.

The rationality of the elliptic region method for scalability
can be justified with the general characteristics of network
node distribution. A longer transferring path always means
more complex network condition, more network switches and
longer network delay, which is detrimental to the data trans-
ferring in service migration. Only one network node serving
as the intermediate node between the source to target ESs is
the most likely case in data transferring of service migration.

Fig. 3. An example of elliptic region based method on base stations from
Shanghai Telecom Industry. A bubble in the picture means a base station
deployment at its place. This is an enlarged image for a certain position of
the map at the bottom right corner. And it is a heat map that shows the
Shanghai overview of distribution density of base stations.

If the sum of the network distance from the intermediate node
to the source and target ESs is fixed, or smaller than the fixed
value for better QoS, all of the possible intermediate nodes
are inside an elliptic region.

The elliptic region method brings about the need of balanc-
ing the size of the elliptic region, which can be represented
by the ratio of the sum distance and the distance between two
focal points. An experimental show of the covering area of the
elliptic region based method on real data of the base stations
from Shanghai Telecom Industry is in Fig. 3. If the size is too
large, the elliptic region will cover too many nodes; otherwise
no sufficient transferring paths will be found, and we have to
turn to the relaxation of time threshold. Neither can ensure
a seamless service migration. The size of the ellipse should
be determined from experience or multiple experiments. In
replicate experiments conducted by us on the Telecom data, if
the size of ellipse is large enough to cover 50 network nodes,
it can balance the two aforementioned conflicting goals very
well.

III. EXPERIMENTAL EVALUATION

From last section, we know that the proposed path selec-
tion method can theoretically give a weakly Pareto optimal
solution about the network plane and service plane. While the
theoretical analysis alone is not enough. So experimental tests
on datasets are needed to validate the proposed method.

A. Dataset and Platform

As no specific off-the-shelf dataset exists, we choose to
generate synthesized data from the following two real datasets.
Note that in the proposed method, the distance between two
nodes is network distance, i.e., hops between them. For the
limit of the datasets, we still use geographical distance to
represent the network distance. This simplification makes
sense for two reasons: 1) if the geographical distance is large,
a single transferring path will be involved in more data trans-
ferring requests from mobile users. This will result in small
bandwidth, long netowrk delay, etc.; 2) as the geographical
distance becomes larger, there will be more network nodes on
a transferring path. This means larger number of hops [6]. If
the network nodes are the same, larger hops always mean long
delay [20].

6 IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX/XX 2020

We get two public datasets to generate two synthesized
datasets, and the latter is used for experimental tests. Two
public datasets are: 1) Data Traffic Records of Shanghai1.
This data contains a lot of mobile base stations in a large
city with their locations (i.e., latitude and longitude) and
workloads (i.e., the number of connected mobile users in a
time slice); and 2) Vehicles’ GPS Traces of Shanghai. The
data of vehicles’ GPS Traces [3] is also recorded in Shanghai.
One piece of trace data contains a sequence of locations and
the correspondent time stamps of a taxi in its moving. An the
two synthesized datasets are generated as follows:

1) DATA #1 is generated from Data Traffic Records of
Shanghai. As an ES or network node can be attached
to a cellular base station in vehicular edge computing,
a base station in the datasets can be considered as an
ES or network node. The bandwidth value of a network
link follows the uniform distribution between [0.5, 1], and
the same goes for the price. As the delay of a link is
relative to its length, we set the delay of a link as the
distance between the two network nodes. We select two
base stations with the maximum network distance as the
source and target ESs.

2) DATA #2 is generated from both of the above two real
datasets. As the two datasets come from the same city,
we can combine them. We know a taxi’s distance from
any ES at any time when it moves. One piece of trace
data shows that the corresponding taxi moves from one
location to another. At the start point, we can find the
nearest ES. We consider it as the source ES. At the end
point, we can find the nearest ES as the target ES. We
selected 50 traces as DATA #1.

The majority of the code is implemented in Python 2.7. The
experiments are all performed on a server with a 16-core 2.6
GHz Intel Xeon processor with 32 GB of RAM.

B. Baseline Algorithms and Metrics
We list the proposed algorithm and three baselines, and their

relations as follows:
• PLP. The proposed algorithm. It is about path selection

on latency and price in service migration.
• PLP/F. A simplified version of PLP. It is without elliptic

region based method for filtering out network nodes.
• PLP/P. Another version of PLP without taking price into

account, i.e., delay matrix acting as cost matrix.
• Dijkstra.It is used inside PLP to find the shortest path.

Obviously the time complexity of PLP/F and PLP/P is the
same to PLP, i.e., O(KN2), while the time complexity of
Dijkstra is O(N2).

We employ the following three evaluation metrics to evalu-
ate the performance of the proposed path selection algorithm:
• Transfer Time. It is needed to transfer all of the data from

the source to target ES. It is relevant to the data volume
and network bandwidth.

• Network Cost. The network cost is paid by network
provider to transfer all of the data from the source to
target ES.

1http://sguangwang.com/TelecomDataset.html

Transfer Time Network Cost Compute Time
Metrics

0

0.5

1.0

No
rm

al
ize

d
va

lu
es

PLP
PLP/F

PLP/P
Djikstra

(a) DATA #1

Transfer Time Network Cost Compute Time
Metrics

0

0.5

1.0

No
rm

al
ize

d
va

lu
es

PLP
PLP/F

PLP/P
Djikstra

(b) DATA #2

Fig. 4. Experimental results on two datasets.

• Compute Time. The time needed to run the algorithms. It
is relevant to the time cost and energy consumption.

A lower value of the above three evaluation metrics implies a
good performance. Note that for each data, we evaluate a set
of source-target ES pairs, and compute the mean value as the
final result in the three metrics.

C. Experimental Results

1) DATA #1: The experimental results are as shown in Fig.
4(a). Note that the values for each metric are normalized to a
range of [0, 1.0] by being divided by the maximum value. The
maximum values for transfer time, network cost, and compute
time are 2.29s, 42.33, and 0.73ms, respectively. As we can
see, Dijkstra has the best performance in computing time, but
the worst with both of transferring time and cost at the same
time. Dijkstra produces only a single transferring path with
the shortest length. It costs the least computing time because
Dijkstra terminates when it finds the shortest path. However,
the shortest path does not necessarily have the lowest price.
What is more, the bandwidth of a single path is always enough,
because adding more path will generate a large bandwidth
sum and take less transferring path. Compared to the proposed
PLP, PLP/F has significant increase in computing time. That
is because that PLP/F must choose transferring path from a
much large candidate set than PLP. While at the same time,
the performance in transferring time and cost of PLP/F is just
a little better than the proposed PLP. So we argue that the
proposed PLP performs better in general than PLP/F. PLP/P

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX/XX 2020 7

TABLE I
AFFECTS OF ELLIPTIC REGION SIZE

Metrics
Region Size = 4 Region Size = 8 Region Size = 12

PLP PLP/F PLP/P Dijkstra PLP PLP/F PLP/P Dijkstra PLP PLP/F PLP/P Dijkstra

Transfer Time (s) 1.18 1.35 1.28 3.23 1.17 1.35 1.28 3.13 1.17 1.35 1.28 3.13

Network Cost (1) 14.78 21.23 25.9 62.59 15.1 21.23 46.1 60.7 14.7 21.23 54.39 60.7

Compute Time (ms) 0.33 0.83 0.25 0.39 6.77 0.83 6.8 4.77 44.3 0.83 52.9 39

does a little better in transferring time and computing time,
but performs much worse in cost than the proposed PLP. The
reason is that PLP/F does not take price into account when
it gives the paths. From Fig. 4(a), we can conclude that the
proposed PLP performs much better than the three baseline
algorithms.

2) DATA #2: The experimental results of four methods on
three metrics are as shown in Fig. 4(b). The maximum values
for transfer time, network cost, and compute time are 3.23s,
62.59, and 0.83ms, respectively. It shows a similar result in
comparison to Fig. 4(a). Dijkstra has the best performance
in computing time, but the worst with both of transferring
time and cost at the same time. This is because Dijkstra
produces only a single transferring path with the shortest
length. Compared to the proposed PLP, PLP/F performs much
worse in computing time and cost. That is because PLP/F must
choose transferring path from a much large candidate set than
PLP. While at the same time, the performance in transferring
time of PLP/F is in the same scale with the proposed PLP.
PLP/P does a little better in computing time, but perform worse
in cost and transferring time than the proposed PLP. So we
conclude that the proposed PLP performs better as it takes
both of delay and cost of network connections into account.

0 1 2 3 4 5
Size of data flow

0

1

2

3

4

5

6

7

No
rm

al
ize

d
va

lu
es

Transfer Time
Network Cost
Compute Time

Fig. 5. Affects of Dataflow size.

3) Affects of Dataflow Size: We also conduct simulation
experiments to show the affects of dataflow size on the above-
mentioned three metrics, and the results are shown in Fig. 5.
The data size in the first experiment is considered as one unit
here. The metric values are normalized by dividing the values
of PLP with one unit data size on DATA #1, namely 0.77s on
tranfer time, 12.11 on network cost, and 0.15ms on compute

time. When the size of data to be transferred is zero, the values
of three metrics return to zero. When the data size is less than
one unit, the growing speeds of transfer time and network cost
become larger. The reason is that the new selected transferring
path always has larger network cost and network latency.
When the data size exceeds 3 units, the compute time does
not grow any more, and the transfer time and network cost
are in proportion to the data size. This phenomenon means
the occurrence of relaxation of time threshold in Alg. 1. If
this happen, no new transferring path would be found any
more. The results are obtained on DATA #1, and using DATA
#2 we can get similar results.

4) Affects of Elliptic Region Size: The effect of elliptic re-
gion size is as shown in Table I. We set parameter Region Size
as 4, 8 and 12 respectively, and conduct the experiments on
DATA #2 to obtain the experimental results. Note that PLP/P
does not filter out ESs, so changing of elliptic region size has
no influence on it. Dijkstra still performs badly on cost and
transferring time. The proposed PLP generally performs better.
As elliptic region size increases, the performance comparison
between PLP and PLP/F will approach one another. The reason
is that when the elliptic region increase to an extent, the
number of ESs in the elliptic region is enough to find the
best transferring scheme.

The experimental results show that the proposed path se-
lection algorithm cannot minimize the data transferring time,
network cost, and computing time. However, it does pretty
well in these three metrics. As a result, we can conclude that
both of experimental results and the theoretical analysis in the
previous section validate the effectiveness of our work.

IV. RELATED WORK

The standard for MEC system in 5G is still under develop-
ment2, and there are not yet very solid works on traffic steering
or service migration. However, traffic steering is an import
aspect in the future 5G [2] to gain high efficiency in utilizing
network. Traffic steering can serve as infrastructures of service
migration in a 5G MEC system. It is quite different from
traditional data transferring tasks between network switches
due to its application scenes and evaluation metrics [21]. Its
differences from the traditional cellular handoff are discussed
in a survey paper of service migration [21]. Cellular handoff is
used to avoid the interruption of telecommunication services
when mobile users move across cellulars. In comparison
to the general SDN applications [22], Traffic steering and

2https://www.3gpp.org/release-17

8 IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX/XX 2020

service migration mainly focus on how to cooperate multiple
geographically-distributed ESs in 5G MEC.

Traffic steering can be realized using SDN technology, and
path selection in service migration can be realized using traffic
steering. Traffic steering in MEC refers to the capability of
the MEC system to route traffic to the targeted applications
in a distributed cloud. Whilst in a generic MEC architecture
as defined in [23], traffic steering is controlled by the MEC
platform through configuring the data plane. In a 5G integrated
deployment the role of the data plane is delegated to UPF
of 5G. A UPF plays the central role in routing the traffic
to desired applications and network functions [2]. 5G will
provide a unified control based on SDN and NFV to run
the proposed traffic steering algorithm [24]. For example,
the control structure of path selection in traffic steering can
run on OpenStack platform, as OpenStack with SDN module
can control large pools of compute, storage, and networking
resources that are distributed at many geographically dispersed
ESs [25], [26].

Path selection is indispensable to traffic steering. The path
selection problem stems from the basic tradeoff between the
cost of service migration (transmission cost and migration
cost) and the improvement of users’ expectation on QoS
that can be achieved after migration [27], [1], [28]. If the
target ES is determined, another problem is to minimize
the total time used for migrating the service data. Andrew
et al. [29] proposed to use a three-layered framework to
avoid transferring unnecessary data if the needed data has
a copy at the target ES. Ha et al. [27] proposed to make
use of various compression algorithm to reduce the size of
transferred data. These works focus on how to minimize the
data volume to be transferred in the service migration process.
But data compression ratio has its inherent limit, and will take
additional time. So the use of these works is limited.

It is important to optimize jointly the network plane (cost of
network provider) and service plane (network delay and data
transferring time), which is a point of our work. No matter to
what extent the transferred data is minimized, it must be sent
out into the mobile network [7], [27], [1]. If we choose the
best set of transferring paths, the total transferring time will
be minimized considerably. Although Ha et al. [27] found that
bandwidth of network connection has a great influence on the
time cost of service migration, they have not further utilized
the mobile network to improve the service migration. In
addition, from the aspects of network operator, due to various
prices of network connections, network operator should choose
the best transferring paths or network connections to save
money of providing data transferring service [14]. Work in
[30] tries to jointly optimize the content placement and content
delivery in the vehicular edge computing network using a
Markov decision process method. While the path selection
problem in our work can be considered as static in the limited
time slot, so we do not take into account other external factors.
While it is promising to solve the service migration based
problems in an integrated model, such as when to start a
service migration, where is the target ES, and how to transfer
data.

Our work is also different from multi-path TCP (MPTCP)

[31]. MPTCP is a general multi-path solution for efficiency
and robustness, instead of being customized for 5G MEC. The
time threshold for seamless service migration in 5G MEC is
an important concept in the proposed path selection algorithm,
which can take into account both of the network plane and
service plane.

V. CONCLUSION

Traffic steering is an important aspect of a 5G MEC system,
and it is a proper tool to run path selection algorithm to
realize seamless service migration in vehicular edge comput-
ing. This paper recognizes the importance of path selection in
traffic steering, and then proposes a path selection algorithm
to jointly optimize in both of network plane and service
plane. It is oriented to data transferring at edge network with
limited bandwidth and price of each network connection. We
conduct theoretical analysis and experiments against baseline
algorithms, and the results show that the proposed algorithm
can help to alleviate QoS degradation in service migration.

In this work, the involved entities like edge servers and
network switches are supposed to be owned by one company
or an enterprise alliance. It is reasonable to conduct infor-
mation gathering, global optimization, and centralized control
based on SDN and NFV technology. However, in 5G, more
wireless access technologies can be utilized for collaboration
of edge servers, network switches, and mobile users, such as
Super Wi-Fi, fixed wireless, etc. This can lead to demand of
reorganization and the flexibility of the network nodes and
data migrating services, especially when more third-party edge
servers or network switches join the vehicular edge computing
system [32]. It is important to focus on trust problem and
collaboration way of the many entities in a geographically-
distributed vehicular edge computing system. Thus, we will
study how to solve these inherent problems using decentralized
technology like blockchain smart contract.

ACKNOWLEDGMENT

This work was supported by National Natural Science Foun-
dation of China (61922017, 61902036), Funds for Creative
Research Groups of China (61921003) and China Postdoctoral
Science Foundation 2019M650589.

REFERENCES

[1] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with predicted
future costs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 4, pp. 1002–1016, 2017.

[2] S. Kekki, R. Arora, L. M. Contreras, Y. Fang, W. Featherstone, and
D. Frydman, “MEC in 5G networks,” ETSI white paper, vol. 1, no. 28,
pp. 1–28, 2018.

[3] S. Liu, Y. Liu, L. M. Ni, J. Fan, and M. Li, “Towards mobility-based
clustering,” in Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (SIGKDD),
pp. 919–928, ACM, 2010.

[4] K. Xiong, S. Leng, J. Hu, X. Chen, and K. Yang, “Smart network slicing
for vehicular fog-rans,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 4, pp. 3075–3085, 2019.

[5] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal, et al.,
“Mobile-edge computing introductory technical white paper,” Mobile-
edge Computing (MEC) Industry Initiative White Paper, 2014.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX/XX 2020 9

[6] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. K.
Leung, “Mobility-induced service migration in mobile micro-clouds,”
in Proceedings of 33rd IEEE Military Communications Conference
(MILCOM), pp. 835–840, IEEE, 2014.

[7] T. Taleb, A. Ksentini, and P. Frangoudis, “Follow-me cloud: When cloud
services follow mobile users,” IEEE Transactions on Cloud Computing,
vol. 1, pp. 1–14, 2016.

[8] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in Proceedings of
the 37th IEEE International Conference on Computer Communications
(INFOCOM), pp. 1–9, IEEE, 2018.

[9] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 2–11, 2009.

[10] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile edge
computing potential in making cities smarter,” IEEE Communications
Magazine, vol. 55, no. 3, 2017.

[11] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[12] A. Aissioui, A. Ksentini, and A. Gueroui, “An efficient elastic distributed
SDN controller for follow-me cloud,” in Proceedings of the 11th Inter-
national Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob), pp. 876–881, IEEE, 2015.

[13] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing: A key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[14] F. Zhao and X. Zeng, “Optimization of user and operator cost for large-
scale transit network,” Journal of Transportation Engineering, vol. 133,
no. 4, pp. 240–251, 2007.

[15] Z. Tang, Z. Wang, P. Li, S. Guo, X. Liao, and H. Jin, “An application lay-
er protocol for energy-efficient bandwidth aggregation with guaranteed
quality-of-experience,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 6, pp. 1538–1546, 2015.

[16] S. Yang, F. Li, M. Shen, X. Chen, X. Fu, and Y. Wang, “Cloudlet
placement and task allocation in mobile edge computing,” IEEE Internet
of Things Journal, vol. 6, no. 3, pp. 5853–5863, 2019.

[17] M. Sniedovich, “Dijkstra’s algorithm revisited: the dynamic program-
ming connexion,” Control and Cybernetics, vol. 35, no. 3, p. 599, 2006.

[18] M. Ajtai, “The complexity of the pigeonhole principle,” in Proceedings
of the 29th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 346–355, IEEE, 1988.

[19] J. Ning, L. Zhang, D. Zhang, and C. Wu, “Scale and orientation adaptive
mean shift tracking,” IET Computer Vision, vol. 6, no. 1, pp. 52–61,
2012.

[20] M. Haenggi and D. Puccinelli, “Routing in ad hoc networks: a case for
long hops,” IEEE Communications Magazine, vol. 43, no. 10, pp. 93–
101, 2005.

[21] S. Wang, J. Xu, N. Zhang, and Y. Liu, “A survey on service migration in
mobile edge computing,” IEEE Access, vol. 6, pp. 23511–23528, 2018.

[22] F. Foresta, W. Cerroni, L. Foschini, G. Davoli, C. Contoli, A. Corradi,
and F. Callegati, “Improving openstack networking: Advantages and
performance of native sdn integration,” in Proceedings of the 52nd IEEE
International Conference on Communications (ICC), pp. 1–6, IEEE,
2018.

[23] M. ETSI, “Mobile edge computing (MEC); framework and reference
architecture,” ETSI, DGS MEC, vol. 3, 2016.

[24] 5G-PPP, “5g vision brochure v1,” 5G-PPP white paper, vol. 1, pp. 1–11,
2016.

[25] D. Haja, M. Szabo, M. Szalay, A. Nagy, A. Kern, L. Toka, and
B. Sonkoly, “How to orchestrate a distributed openstack,” in Proceedings
of the 37th IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pp. 293–298, IEEE, 2018.

[26] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[27] K. Ha, Y. Abe, Z. Chen, W. Hu, B. Amos, P. Pillai, and M. Satya-
narayanan, “Adaptive VM handoff across cloudlets,” Technical Report
CMU-CS-15-113, pp. 1–27, 2015.

[28] J. Plachy, Z. Becvar, and P. Mach, “Path selection enabling user mobility
and efficient distribution of data for computation at the edge of mobile
network,” Computer Networks, vol. 108, pp. 357–370, 2016.

[29] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Migrating
running applications across mobile edge clouds: poster,” in Proceedings
of the 22nd Annual International Conference on Mobile Computing and
Networking (MobiCom), pp. 435–436, ACM, 2016.

[30] G. Qiao, S. Leng, S. Maharjan, Y. Zhang, and N. Ansari, “Deep
reinforcement learning for cooperative content caching in vehicular edge
computing and networks,” IEEE Internet of Things Journal, vol. 7, no. 1,
pp. 247–257, 2020.

[31] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath tcp.,”
in NSDI, vol. 11, pp. 8–8, 2011.

[32] J. Xu, S. Wang, B. Bhargava, and F. Yang, “A blockchain-enabled
trustless crowd-intelligence ecosystem on mobile edge computing,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3538–
3547, 2019.

Jinliang Xu received the bachelor degree in elec-
tronic information science and technology from Bei-
jing University of Posts and Telecommunications in
2014. Currently, he is a Ph.D. candidate in computer
science at the State Key Laboratory of Networking
and Switching Technology, Beijing University of
Posts and Telecommunications. His research inter-
ests include Mobile Cloud Computing, Blockchain,
AI, and Crowdsourcing.

Xiao Ma received her Ph.D. degree in Department
of Computer Science and Technology from Ts-
inghua University and B.S. degree in Telecommuni-
cation Engineering from Beijing University of Posts
and Telecommunications (BUPT), Beijing, China,
in 2018 and 2013. She is currently a postdoctoral
fellow at the State Key Laboratory of Networking
and Switching Technology, BUPT. From October
2016 to April 2017, she visited the Department
of Electrical and Computer Engineering, University
of Waterloo, Canada. Her research interests include

mobile cloud computing and mobile edge computing.

Ao Zhou is an associate professor at the State Key
Laboratory of Networking and Switching Technol-
ogy, Beijing University of Posts and Telecommu-
nications. She received her Ph.D. degree in com-
puter science at Beijing University of Posts and
Telecommunications of China in 2015. Her research
interests include cloud computing, edge computing,
and service reliability.

Qiang Duan received the BS degree in electrical
and computer engineering and the MS degree in
telecommunications and electronic systems. He re-
ceived the PhD degree in electrical engineering from
the University of Mississippi. He is an associate pro-
fessor at the Pennsylvania State University Abington
College. His currently active research areas include
future internet architecture, network virtualization,
network-as-a-service, software defined network, and
cloud computing. He has published over 70 papers
and authored five book chapters. He is on the edi-

torial boards for more than 10 international research journals and has served
on the technical program committees for numerous international conferences.

10 IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XX/XX 2020

Shangguang Wang received his PhD degree at
Beijing University of Posts and Telecommunications
in 2011. He is Professor and Vice-Director at the
State Key Laboratory of Networking and Switching
Technology (BUPT). He has published more than
150 papers recent years, and played a key role
at many international conferences, such as general
chair and PC chair. His research interests include
service computing, cloud computing, and mobile
edge computing. He is a senior member of the IEEE
in 2011, and Editor-in-Chief of the International

Journal of Web Science.

