On the Aggregated Resource Management for Satellite Edge Computing

Xiaobin Xu
the Faculty of Information Technology
Beijing University of Technology
Beijing, China
xuxiaobin@bjut.edu.cn

Hui Zhao
the Faculty of Information Technology
Beijing University of Technology
Beijing, China
zh2019@emails.bjut.edu.cn

Chang Liu
School of Information Engineering
Guangdong University of Technology
Guangzhou, China
liuchang_research@163.com

Cunqu Fan
Atmospheric Remote Sensing Satellite Data Center
National Satellite Meteorological Center
Beijing, China
fancq@cma.gov.cn

Zhongjun Liang
Data Service Department
National Meteorological Information Center
Beijing, China
liangzj@cma.gov.cn

Shangguang Wang
the State Key Laboratory of Networking and Switching Technology
Beijing University of Posts and Telecommunications
Beijing, China
gswang@bupt.edu.cn

Abstract—Geosynchronous Earth Orbit (GEO) satellites, which can relay image data for Low Earth Orbit (LEO) satellites, play an important role in remote sensing. With the development of satellite technologies, the significantly improved computation capabilities of GEO satellites have enabled space service computing, through which GEO satellites can provide data processing services before forwarding to reduce the quantity of transmitted data. In the presence of multiple LEO satellites, how to make effective use of limited communication and computation resources in GEO satellites has become crucial. At present, the research on satellite resource management typically focuses on either communication or computation resources. Existing resource management algorithms are usually of slow convergence speed, which limits their applicability in real-time remote sensing scenarios. Therefore, we propose an aggregated resource management method for remote sensing applications. We first propose models for transmission tasks and processing tasks of remote sensing images. Then we formulate the aggregated resource management for satellite edge computing as a hybrid Stackelberg game and simplify the problem to speed up its convergence speed. Then we propose a distributed resource management algorithm to determine the optimal strategies. Simulation results show that the proposed method can quickly obtain the optimal resource allocation strategy and outperforms typical dynamic iterative algorithms in terms of service quantity and throughput.

Index Terms—Remote sensing, mobile edge computing, resource management, Stackelberg game

I. INTRODUCTION

With the rapid development of satellite launching technology, satellite applications have received great attention. Remote sensing data being relayed by GEO satellites have become a major way of data transmission for LEO satellites [1]. The numbers of GEO satellites provide relay services is very limited by the orbiting space and costs. How to effectively use limited communication resources of GEO satellites has become crucial. With the development of electronic component manufacturing technology, computing hardware in satellites has been enhanced [2]. GEO satellites are with the capability of space service computing, which can provide process services and reduce the quantity of transmitted data effectively. In order to make better use of satellite communication and computation resources, resource management of satellite edge computing has attracted broad interests from academia and industry.

Current research usually focuses on communication resource management or computing resource management. Hu et al. proposed a competitive market setting model for resource management to achieve a balance between quality of service (QoS) and energy consumption [3]. Kawamoto et al. proposed a flexible frequency resource allocation method to deal with inter-beam interference [4]. Jia et al. proposed an intelligent resource management scheme composed of spectrum sensing, prediction and allocation to improve spectrum efficiency with different user densities [5]. Jiao et al. investigated a joint network stability and resource allocation optimization problem to maximize the long-term network utility [6]. Liao et al. proposed a cooperative multi-agent deep reinforcement learning framework for radio resource management [7]. Chen et al. proposed a layered architecture and multiple M/M/1 queuing models, then designed a resource cube algorithm to reduce the total system delay [8]. He et al. proposed a stochastic optimization framework to maximize the time average number of hybrid tasks by jointly optimizing scheduling periods and antenna time block allocation [9]. Li et al. proposed a dynamically optimal cooperation scheme between terrestrial agents and satellite systems based on a stochastic process and optimal contract principle to improve spectrum efficiency [10]. Li et al. propose a computation offloading mechanism based on a two-stage Stackelberg game...
to analyze the interaction between multiple edge clouds and multiple IoT devices [11].

On the basis of the aforementioned existing solutions, we propose to further consider aggregated management for communication and computation resources based on a hybrid Stackelberg game. We enhance the convergence speed of the algorithm as well, so that it can be better applied to real-time application scenarios. The main contributions of this paper are as follows:

- We model the transmission and computation of remote sensing images, and the process of integrated resource management as a hybrid Stackelberg game.
- We simplify the Stackelberg game model based on requirements of the application scenario, so that the Nash equilibrium point of the model can be quickly calculated.
- We propose an efficient method of resource allocation in remote sensing image application, which can quickly achieve optimal resource allocation strategy of LEO satellites.

The rest of the paper is organized as follows. In section II, we propose to further consider aggregated management for multiple IIoT devices [11]. On the basis of the aforementioned existing solutions, we simplify the Stackelberg game model based on requirements of the application scenario, so that the Nash equilibrium point of the model can be quickly calculated.

II. HYBRID STACKELBERG GAME MODEL

A. Application Scene Modeling of Remote Sensing Image

In remote sensing applications, GEO satellites can divide remote sensing data of each LEO satellite into two parts, one of which is forwarded directly to the ground, and the other is forwarded to the ground after processing. The process is shown in Fig. 1.

![Fig. 1. Schematic diagram of remote sensing image application](image)

Suppose that there are M LEO satellites, denoted as: $LEO = \{1, 2, \cdots, M\}$. And N GEO satellites, denoted as: $GEO = \{1, 2, \cdots, N\}$. For the m^{th} LEO satellite, the total amount of data uploaded is $Q_m = (FQ_m, PQ_m)$, where $FQ_m > 0$ represents the amount of data forwarded directly, and $PQ_m > 0$ represents the amount of data processed. The quantity of processed data is ωPQ_m, where the compression ratio of data processing is recorded as $\omega, 0 < \omega < 1$.

In the process of remote image sensing, LEO satellites only need to send all the raw data to GEO satellites, so the cost mainly comes from the energy consumed by transmission. We model the energy consumption as follows: the total amount of data sent by LEO satellite m is $FQ_m + PQ_m$. The transmission time T_{mn} from LEO satellite m to GEO satellite n is

$$
T_{mn}^t = \frac{r_{mn}}{r_{mn}}
$$

where r_{mn} denotes the transmission rate from satellite m to satellite n. The energy consumption of transmission from satellite m to satellite n is $E_{mn}^t = \rho_{mn} r_{mn}$, where ρ_{mn} denotes the transmission power from satellite m to satellite n.

The costs of GEO satellites consist of calculation costs and transmission costs. For the task of satellite m, the processing time in satellite n is $P_{mn}^t = \frac{mQ_n}{c_n}$, where c_n denotes the calculation ability of satellite n. The energy consumption of processing is $E_{mn}^c = \eta_n T_{mn}^c$, where η_n represents the energy consumption coefficient per CPU cycle of satellite n.

The total amount of data to be transmitted by satellite n is $GQ_m = FQ_m + \omega PQ_m$, then the time for transmitting data from satellite n to the ground station is expressed as $GT_{mn}^t = \frac{GQ_m}{r_m}$, where r_m denotes the rate of data transmission from satellite n to the ground station. And then the transmission energy consumption is $E_{mn}^t = \rho_m GT_{mn}^t$, where ρ_m represents the data transmission power of satellite n to the ground station.

B. Hybrid Stackelberg Game Model

The management of transmission and computation resources can be modeled as a hybrid Stackelberg game model. GEO satellites, as service providers and leaders in the game, will first give pricing strategies of communication and computation resources. LEO satellites are not only consumers of the service, but also followers of the game, so they will determine the data processing and transmission schemes according to pricing strategies. We denote the set of remote sensing image transmission requirements of LEO satellites as $Q = \{Q_1, Q_2, \cdots, Q_M\}$, and the computation resource pricing set of GEO satellites as $P = \{P_1, P_2, \cdots, P_N\}$, where $P_i = (CP_i, TP_i)$, $CP_i > 0$, $TP_i > 0$. The utility functions of service providers and consumers are as follows:

For the LEO satellite m, the utility function $F_m(TP_n, CP_n, FQ_m, PQ_m)$ is expressed as:

$$
F_m(TP_n, CP_n, FQ_m, PQ_m) = U_m - D_m - \gamma E_{mn}^t.
$$

(1)

Where U_m denotes the satisfaction of satellite m, $U_m = al\ln(1 + FQ_m) + bl\ln(1 + PQ_m)$. a, b denotes the coefficients of satisfactions with communication and computation. D_m denotes pay for expenses of satellite m, $D_m = TP_n \times FQ_m + CP_n \times PQ_m$. E_{mn}^t denotes the transmission energy consumption of satellite m, and γ denotes the coefficient factor of energy consumption. Then F_m is calculated as below.

$$
F_m(TP_n, CP_n, FQ_m, PQ_m) = al\ln(1 + FQ_m) + bl\ln(1 + PQ_m) - TP_n \times FQ_m - CP_n \times PQ_m - \gamma \rho_{mn}(FQ_m) + PQ_m)
$$

(2)
For the GEO satellite n, its utility function is shown in equation (3).

\[
G_n(TP_n, CP_n, FQ_m, PQ_m) = \sum_{S_{mn}=1} \left(D_m - \delta \frac{c_n}{S_{mn}} - \delta \frac{G_{m}^t}{S_{mn}} \right).
\]

Where δ is the coefficient factor of energy consumption. $S_{mn} = 1$ means that satellite m choose the services in satellite n to forward and process the image data. Then G_n is obtained as below.

\[
G_n(TP_n, CP_n, FQ_m, PQ_m) = \sum_{S_{mn}=1} \left(TP_n \times FQ_m + CP_n \times PQ_m - \delta \frac{c_n}{S_{mn}} - \delta \frac{\rho_n (FQ_m + \omega PQ_m)}{r_n} \right).
\]

C. Nash Equilibrium Analysis

This section proves that there is a Nash equilibrium point in the hybrid Stackelberg game model proposed in this paper.

Theorem 1. Considering dynamic transmission requirements with a fixed number of LEO satellites, for a certain LEO satellite whose utility function satisfies equation (2), there exists a unique Nash equilibrium point.

Proof. The first-order partial derivative of the utility function of the m^{th} satellite (eqn.(2)) are calculated as follow.

\[
\frac{\partial}{\partial FQ_m} \left(F_m (TP_n, CP_n, FQ_m, PQ_m) \right) = \frac{a}{1 + FQ_m} - TP_n - \gamma \frac{\rho_{mn}}{r_{mn}},
\]

and

\[
\frac{\partial}{\partial PQ_m} \left(F_m (TP_n, CP_n, FQ_m, PQ_m) \right) = \frac{b}{1 + PQ_m} - CP_n - \gamma \frac{\rho_{mn}}{r_{mn}}.
\]

Then the second-order partial derivative of equation (2) are calculated as follows.

\[
A = \frac{\partial^2 F_m^2 (TP_n, CP_n, FQ_m, PQ_m)}{\partial FQ_m^2} = \frac{a}{(1 + FQ_m)^2},
\]

\[
B = \frac{\partial^2 F_m^2 (TP_n, CP_n, FQ_m, PQ_m)}{\partial PQ_m^2} = 0,
\]

and

\[
C = \frac{\partial^2 F_m^2 (TP_n, CP_n, FQ_m, PQ_m)}{\partial FQ_m \partial PQ_m} = \frac{-b}{(1 + PQ_m)^2}.
\]

Since $AC - B^2 > 0$ and $A < 0$, the maximum value of utility function and the Nash equilibrium both exist.

Theorem 2. We consider a fixed number of GEO satellites with dynamic prices of resources. For each GEO satellite whose utility function satisfies equation (4), there is a unique Nash equilibrium point for the utility function.

Proof. The utility function of the GEO satellite n is constructed in equation (4). The first-order partial derivative of TP_n and CP_n are calculated as follows.

\[
\frac{\partial}{\partial TP_n} \left(G_n(TP_n, CP_n, FQ_m^*, PQ_m^*) \right) = \sum_{S_{mn}=1} \left(\frac{a_{mn}^r (\gamma c_n r_n \rho_{mn} + \delta \eta_{mn} r_n + \delta \omega c_n r_{mn})}{c_n r_n (r_n CP_n + \gamma \rho_{mn})^3} - 1 \right),
\]

and

\[
\frac{\partial}{\partial CP_n} \left(G_n(TP_n, CP_n, FQ_m^*, PQ_m^*) \right) = \sum_{S_{mn}=1} \left(\frac{b_{mn}^r (\gamma c_n r_n \rho_{mn} + \delta \eta_{mn} r_n + \delta \omega c_n r_{mn})}{c_n r_n (r_n CP_n + \gamma \rho_{mn})^3} - 1 \right).
\]

The second-order partial derivative of equation (4) are calculated as follows.

\[
A = \sum_{S_{mn}=1} \frac{\partial}{\partial FQ_m} \left(G_m^2 (TP_n, CP_n, FQ_m^*, PQ_m^*) \right) = \frac{2a r_{mn}^2 (\gamma c_n r_n \rho_{mn} + \delta \eta_{mn} r_n + \delta \omega c_n r_{mn})}{c_n r_n (r_n CP_n + \gamma \rho_{mn})^3},
\]

\[
B = \sum_{S_{mn}=1} \frac{\partial}{\partial PQ_m} \left(G_m^2 (TP_n, CP_n, FQ_m^*, PQ_m^*) \right) = 0,
\]

and

\[
C = \sum_{S_{mn}=1} \frac{\partial^2}{\partial FQ_m \partial PQ_m} \left(G_m^2 (TP_n, CP_n, FQ_m^*, PQ_m^*) \right) = \frac{-2b r_{mn}^2 (\gamma c_n r_n \rho_{mn} + \delta \eta_{mn} r_n + \delta \omega c_n r_{mn})}{c_n r_n (r_n CP_n + \gamma \rho_{mn})^3}.
\]

Since $AC - B^2 > 0$ and $A < 0$, the maximum value of utility function and the Nash equilibrium both exist.

III. AGGREGATED RESOURCE MANAGEMENT METHOD BASED ON HYBRID STACKELBERG GAME

A. Model Simplification

In equations (12) and (13), r_{mn} and ρ_{mn} change with m. However, in practical network applications, network infrastructure often provides the same transmission rate for terminal devices, and similar terminals often have the same standardized transmission power. Assuming that in the future 6G scenario, GEO satellites, as space-based 6G base stations, provide general network access services to LEO satellites. LEO satellites send data to GEO satellites at the same rate (denoted as r_{mn}) with the same transmission power (denoted as ρ_{mn}), i.e., $r_{mn} = r$, $\rho_{mn} = \rho$, where r and ρ are both
constant. Equation (12) and equation (13) are then rewritten as follows:

\[
\frac{\partial (G_n (TP_n, CP_n, FQ^*_m, PQ^*_m))}{\partial TP_n} = m \left(\frac{ar (\gamma r_n \rho + \delta \rho n r)}{r_n (r TP_n + \gamma \rho)^2} - 1 \right),
\]

and

\[
\frac{\partial (G_n (TP_n, CP_n, FQ^*_m, PQ^*_m))}{\partial CP_n} = m \left(\frac{br (\gamma c_n r_n \rho + \delta \eta n r_n r + \delta \omega \rho n c_n r)}{c_n r_n (r CP_n + \gamma \rho)^2} - 1 \right).
\]

The zeros of equations (12) and (13) are solved as follows.

\[
TP^*_n = \sqrt{\frac{a (\gamma r_n \rho + \delta \rho n r)}{r r_n} - \frac{\gamma \rho}{r}},
\]

and

\[
CP^*_n = \sqrt{\frac{b (\gamma c_n r_n \rho + \delta \eta n r_n r + \delta \omega \rho n c_n r)}{r c_n r_n} - \frac{\gamma \rho}{r}}.
\]

B. Distributed Resource Management Algorithm

Based on the analysis of Nash equilibrium in the hybrid Stackelberg game, we proposed a distributed resource management algorithm.

GEO satellites first provide their initial pricing strategies and broadcasts them to LEO satellites. The resource requirements of GEO satellites is initialize to be 0, i.e., \(FQ^*_m = PQ^*_m = 0\). Then, \(TP_n = a - \frac{\gamma \rho}{r}, CP_n = b - \frac{\gamma \rho}{r}\). After receiving the pricing strategy, LEO satellites choose suitable GEO satellites and send their optimal resource requirements to selected GEO satellites. GEO satellites calculate the optimal pricing strategies according to the requirements of LEO satellites, this process is repeated until the algorithm converges. This process is described in details in Algorithm 1.

Through algorithm 1, both GEO satellites and LEO satellites can quickly calculate the optimal prices and resource requirements. In the worst case, the amount of computation on a certain GEO satellite is the same with the number of messages from LEO satellites, and the computational complexity of each round is \(O(M)\). Similarly, the calculation complexity of each round of each LEO satellite is \(O(N)\) in the worst case. In real applications, due to the limited number of satellites, this algorithm usually converges as a much faster speed.

IV. NUMERICAL RESULTS

In order to verify the performances of the resource management method proposed in this paper, a typical remote sensing satellite application scenario is designed and simulated based on MATLAB 2019b.
TABLE I
PARAMETER SETTINGS

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Satisfaction coefficient of transmission</td>
<td>10</td>
</tr>
<tr>
<td>b</td>
<td>Satisfaction coefficient of computation</td>
<td>6</td>
</tr>
<tr>
<td>γ</td>
<td>Energy consumption coefficient of LEO satellites</td>
<td>0.1</td>
</tr>
<tr>
<td>δ</td>
<td>Energy consumption coefficient of GEO satellites</td>
<td>0.1</td>
</tr>
<tr>
<td>r</td>
<td>Transmission rate of LEO satellites</td>
<td>10 MBps</td>
</tr>
<tr>
<td>r_n</td>
<td>Transmission rate of GEO satellite n</td>
<td>100 MBps</td>
</tr>
<tr>
<td>ρ</td>
<td>Transmission power of LEO satellites</td>
<td>10 W</td>
</tr>
<tr>
<td>ρ_n</td>
<td>Transmission power of GEO satellite n</td>
<td>100 W</td>
</tr>
<tr>
<td>C_n</td>
<td>Computing capability of GEO satellite n</td>
<td>5 GB/s</td>
</tr>
<tr>
<td>η_n</td>
<td>Computation power GEO satellite n</td>
<td>50 W</td>
</tr>
<tr>
<td>ω</td>
<td>Compression ratio of processing</td>
<td>0.01</td>
</tr>
<tr>
<td>T</td>
<td>Time duration of 1 round</td>
<td>10 s</td>
</tr>
<tr>
<td>QT</td>
<td>Threshold of task quantity</td>
<td>0.01</td>
</tr>
<tr>
<td>PT</td>
<td>Threshold of price</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Fig. 2. Utilities of players

Fig. 3. Comparison on social welfare

use dynamic iterative algorithms (DIAs) to find optimal prices [11]. To evaluate the proposed approach comprehensively, we compare the proposed approach with a typical DIA-based approach [11]. In DIA, step sizes are set to be 0.1, 0.08, 0.06, respectively. Other parameters are set to be the same with the proposed algorithm. We define social welfare as the sum of utilities of all players. The comparison on social welfare is shown in Fig. 3.

As shown in Fig. 3, the convergence speed of DIA is determined by the step size. Larger step size leads to shorter convergence time. Through DIA, the social welfare reaches its maximum value in the 20th round when its step size is set to be 0.1. Nonetheless, the convergence time is still much longer than the proposed approach. In practical scenarios, fast convergence speed leads to performance improvement, which is discussed in the next subsection.

C. Performance Discussions and Comparisons

To investigate the performance of the proposed approach, we evaluate the performance of the proposed approach in terms of quantity of service and throughput, respectively.

The quantity of service includes quantity of transmission and computation, which are denoted as TFQ and TPQ, respectively. TFQ and TPQ can be calculated in eqns (21) and (22), respectively.

$$TFQ = \sum FQ_m, \quad (21)$$

and

$$TPQ = \sum PQ_m. \quad (22)$$

We investigate the quantity of remote sensing data transmitted to the ground per time slot (refer to as throughput), and the total quantity of remote sensing data transmitted to the ground in time t (refer to as average throughput). The throughput (denoted as TPS) and average throughput (denoted as $ATPS$) can be computed as shown in eqns.(23) and (24).

$$TPS = \frac{\sum(FQ_m + PQ_m)}{T}, \quad (23)$$

and

$$ATPS = \frac{\sum_{t=t_0}^t(FQ_m + PQ_m)}{t - t_0}. \quad (24)$$

where t_0 denotes the beginning time of application, t denotes the time.

In these simulations, the step size of DIA is set to be 0.1. Simulation results on quantity of service and throughput are shown in Fig. 4 and Fig. 5, respectively. As shown in Fig. 4, TFQ and TPQ of the proposed approach reach their maximum in the second round. However, through DIA, TFQ and TPQ reach their maximum at the 11th and the 20th round, respectively. Before DIA reach its optimal solution, the proposed approach forward and process more data to the ground, which increases the quantity of space-based service.

As shown in Fig. 5, the throughput and average throughput of the proposed approach are always larger than that of DIA. The throughput of DIA reaches its maximum at the 20th round, which is the same as the result in Fig. 4. Over time, the...
average throughput of DIA increases much slower than the average throughput of the proposed approach. This is because that the fast convergence speed improves the throughput of the application.

These simulations show that the proposed approach has a higher convergence speed compared with existing dynamic iterative algorithms. Higher convergence speed leads to higher performances in terms of quantity of service and throughput.

V. CONCLUSION

In this paper, a hybrid Stackelberg game is modeled based on the remote sensing image transmission scenario. With the simplification of the hybrid Stackelberg game model, we proposed a novel approach with high convergence speed. The performance of the proposed approach is verified by simulations and shows higher forwarded and processed quantity of service and throughput.

REFERENCES