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 

Abstract—With the rapid upgrading and explosive growth of 

Internet of Things (IoT) devices in mobile edge computing, more 

and more IoT applications with high resource requirements are 

developed and utilized. Meanwhile, there are large quantities of 

edge nodes (e.g., switches and edge servers) with limited resources, 

higher operating costs, and certain failure probabilities in mobile 

edge computing environment. Therefore, when an IoT application 

is split into multiple collaborative tasks and offloaded into 

multiple edge clouds, there is an urgent need to increase the 

availability level of the task allocation scheme and the resource 

utilization of edge servers under the condition of certain 

communication delay. In this paper, we first present a joint 

optimization objective to evaluate the unavailability level, 

communication delay, and resource wastage while allocating the 

same batch of IoT applications to multiple edge clouds. We then 

propose an approach to minimize the joint optimization objective 

under the condition of certain communication delay. Finally, we 

performed a comprehensive simulation experiment analysis to 

demonstrate that our proposed approach is superior to other 

related approaches. 

 
Index Terms—mobile edge computing; IoT application; 

availability; resource wastage; communication delay 

I. INTRODUCTION 

ITH the widespread adoption of Internet of Things (IoT) 

in electronic medical care, disaster response, smart city, 

intelligent transportation, and smart grid [1], IoT devices such 

as Raspberry Pi and smartphones are growing in popularity. 

Cisco forecasted in 2018 that the quantity of IoT devices in the 

world will increase from 8.6 billion in 2017 to 12.3 billion in 

2022, in which more than 422 million IoT devices and 

connections worldwide will adopt 5G [2]. However, since these 

IoT devices typically own limited resources, they cannot satisfy 

the computing requirements of IoT applications [3]. Therefore, 

mobile edge computing (MEC) emerges as a new computing 

paradigm that exploits resources near the IoT devices to 

provide services in a timely manner along with the cloud 

servers [4]. In MEC, the delay-sensitive and resource-hungry 

IoT applications from the IoT devices are usually processed in 
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the edge clouds, which consist of some edge nodes (e.g., edge 

servers, switches, IoT gateways, routers, etc.) with computation, 

communication, and storage capabilities [5]. 

Nevertheless, these edge clouds often own the distributed 

nature and volatile workload, and lack the advanced support 

systems such as air-conditioning units and power generation 

equipment that are present in the remote cloud [6]. Therefore, 

they have very common software and hardware failures (e.g., 

switch or edge server faults), and then have lower availability 

than the remote cloud [6]. Besides the increase of unavailability 

level and service level objective violations, these failures can 

adversely affect the deployed IoT applications and result in 

significant performance degradation of the mobile edge 

computing environment. For example, since the response time 

of some applications has increased by 500ms, Google 

experienced system performance degradation which lead to a 

revenue loss of 20 percent [7]. Moreover, because the existing 

fault-tolerant mechanisms in the remote cloud typically 

consume lots of resources, and there are some limited power 

capacity and small processors in the edge clouds, the existing 

fault-tolerant mechanisms in the remote cloud are not easy to be 

applied to the edge clouds [8]. Therefore, how to obtain a high 

available and resource-efficient task allocation scheme under 

the condition of certain communication delay is an urgent 

problem that requires immediate attention [9]. 

The resource-hungry and delay-sensitive IoT applications 

are often split onto multiple collaborative tasks that can be 

independently designed, developed, deployed, and maintained, 

and then offloaded to the edge servers for processing by 

multiple containers or virtual machines [10],[11]. Although 

these edge servers to be selected all work, if there is no 

availability assessment of allocation scheme of these tasks, 

some edge servers that are not suitable for running these 

containers or virtual machines can deteriorate or even go down 

[12]. Therefore, lack of the availability assessment will further 

lead to the edge cloud availability with high uncertainty. At 

present, there are no researches carrying on the availability 

assessment of task allocation of IoT application, which makes 

the availability of edge servers very different from the ideal 

situation. This is, if the availability level of the task allocation 

scheme is not effectively guaranteed over the long term, the 

deployment of the IoT application will ultimately fail. 

In order to address the above issues, in this paper, we 

introduce an Optimized Task Allocation Approach (OTAA) of 

IoT application based on biogeography-based optimization 

algorithm (BBO) [13] to simultaneously maximize the 

availability level of task allocation scheme and resource 

utilization of edge servers under the condition of certain 

communication delay. To find the equilibrium between the 
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aforementioned objectives, we model the unavailability level, 

communication delay and the resource wastage, and establish a 

joint optimization function of them. 

Our main contributions of this paper include:  

 The optimized task allocation problem of the IoT application 

as described above is formulated, and converted to three 

contradictory problems which are solved by the 

unavailability level model, latency model, and resource 

wastage model. 

 On the basis of the above three models, a joint optimization 

model is first established to measure the unavailability level 

of task allocation scheme, the communication delay dealing 

with the IoT applications, and the resource wastage of edge 

servers. Then, we present the OTAA to minimize the joint 

optimization objective, i.e., simultaneously maximize the 

availability level and resource utilization under the 

condition of certain communication delay. 

 We build a mobile edge computing system model, and 

conduct a comprehensive performance evaluation of our 

proposed approach. The simulation experiment results 

demonstrate that our proposed approach can achieve 

flexible equilibrium among the unavailability level and 

resource wastage under the condition of certain 

communication delay. 

Organization. Section Ⅱ presents related work; Section Ⅲ 

proposes our system model; Section Ⅳ introduces our research 

problem and problem formulation; Section Ⅴ introduces the 

design and implementation of our proposed approach; Section 

Ⅵ conducts the simulation experiments; Finally, Section Ⅶ 

presents conclusions of this paper along with our future work. 

II. RELATED WORK 

As part of an emerging 5G network, edge cloud has become 

one of the key enablers for providing the critical IoT services 

(e.g., content delivery and IoT applications). When these 

services are offloaded to the edge clouds, the availability level 

of task allocation scheme of these services, communication 

delay dealing with the IoT applications, and the resource 

utilization of edge servers handling these services are pressing 

issues that need to be improved. At present, there are numerous 

research works to study them. 

For the service availability in multiple edge clouds, Aral et al. 

[6] exploited the historical failure data to obtain dependencies 

between failures and model their effect on edge virtual machine 

availability through a Bayesian networks. Similarly, Soualhia 

et al. [7] analyzed the data from the edge computing 

environment via supervised machine learning and statistical 

techniques to detect and predict the faults at infrastructure-level 

of edge clouds. Zhu et al. [12] modeled the availability and 

inter-host network bandwidth cost effect from different 

placement policy of the mobile edge applications, and the 

availability level is improved by separating virtual machines of 

the mobile edge application. Similarly, Yao et al. [14] 

investigated the equilibrium between maximizing the reliability 

of virtual machines and minimizing the virtual machine rentals 

for fog resource provisioning in IoT networks. Furthermore, 

Maia et al. [15] minimized response time deadline violation, 

operational cost, and unavailability by investigating how to 

deploy replicas of applications and requests among these 

replicas. However, the above research works did not consider 

the effect of the edge node (e.g., switch and edge server) failure 

probabilities on the availability level of task allocation scheme 

of the IoT applications, and the effect of the different task 

allocation schemes on the resource utilization of edge clouds 

and the communication delay dealing with the IoT applications. 

For the resource utilization of edge clouds, Oueis et al. [16] 

introduced a customizable algorithm of low complexity small 

cell clusters establishment and resources management in the 

case of the consideration of the multi-user computation 

offloading. Zhao et al. [17] allocated virtual machine replica 

copies of the IoT application to the edge computing 

environment via a new framework to minimize the average data 

traffic. Hu et al. [18] researched the service allocation problem 

in mobile edge computing to find the equilibrium between load 

balance and average network delay. Xie et al. [19] proposed an 

efficient retrieval service and data placement for edge 

computing to realize the effective control of routing path 

lengths, forwarding table sizes, and the load balance. Moreover, 

Pasteris et al. [20] focused on multiple services place problem 

in a heterogeneous mobile edge computing environment to 

maximize the total system reward. Farhadi et al. [21] jointly 

optimized request scheduling and service (data & code) 

placement to serve time-varying demands under the 

consideration of system stability and operation cost in a 

two-time-scale framework. Chen et al. [22] minimized the 

latency for IoT devices and the monetary cost for Application 

Service Providers by formulating data-intensive application 

edge allocation approach. Furthermore, Meng et al. [23] 

introduced an online algorithm to greedily schedule newly 

arriving tasks and satisfy the new deadlines by considering 

whether to take the place of multiple existing tasks. Chen et al. 

[24] minimized the response time of the data-intensive edge 

application allocation under storage constraints and load 

balancing conditions by introducing a data-intensive 

application allocation policy with genetic algorithm. Khan et al. 

[25] introduced a mathematical model to calculate the overall 

computational time and energy consumption of mobile cloud 

application models. Guo et al. [26] carried out the assignment 

of tasks in an online fashion to realize an optimal power-delay 

equilibrium in the system by designing policies. Maia et al. [27] 

minimized the potential violation of their QoS requirements by 

jointly investigating the load distribution and placement of 

scalable IoT applications. Goudarzi et al. [28] minimized the 

execution time and energy consumption of IoT applications by 

exploiting a new application placement technique with the 

memetic algorithm to realize batch application placement. Peng 

et al. [29] proposed an end-edge-cloud collaborative computing 

offloading approach based on improved Strength Pareto 

Evolutionary algorithm to minimize simultaneously time 

consumption and energy consumption of mobile users, and 

resource utilization of edge servers. Cheng et al. [30] proposed 

three algorithms to reduce the latency and energy consumption 

in data shared mobile edge computing systems by studying the 

task assignment algorithm. Although these research works have 

studied various types of resource consumption and latency or 

response time in edge computing environment, they have not 

considered the balance between resource wastage of edge 

servers and availability level of task allocation scheme of IoT 
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application under the condition of certain communication 

delay. 

Different from the above study, we firstly model the 

unavailability level of task allocation scheme, the 

communication delay dealing with the IoT applications, and the 

resource wastage of edge servers in multiple edge clouds with 

fiber backhaul network. Then, we propose the joint 

optimization problem and solve it by the OTAA under the 

condition of the contradictory relation of resource utilization, 

communication delay and availability level. For ease of 

understanding, Table Ⅰ lists the key notations in this paper. 

III. SYSTEM MODEL 

In this section, we will propose our system model of the 

mobile edge computing environment. 

A. System Description 

As shown in Fig. 1, we build a mobile edge computing 

system including multiple edge clouds (ECs) connected together 

via fiber backhaul network using full mesh topology [31], [32]. 

Each edge cloud is endowed with computational and storage 

capacities by deploying some heterogeneous edge servers 

interconnected using switches, and accessed via a small cell 

base station covering a specified area that can receive and 

forward offloading requests from IoT devices. Each application 

service providers can rent the small cell base stations from 

communication facility providers to deploy IoT applications, in 

which each IoT application consists of a set of indivisible tasks 

to be executed in some edge clouds. As we all know that switch 

failures take up most of the downtime in remote cloud data 

centers [33], and thus each edge cloud is called an individual 

fault domain in our system. 

B. Network Model 

As shown in Fig.2, the mobile edge computing network 

topology is modeled as an undirected graph denoted by G = 

(Ѵ,Ԑ), where the vertices Ѵ and the edges Ԑ represent the set of 

edge clouds including heterogeneous quantity of edge servers 

and network links between the edge clouds, respectively. Since 

the tall buildings in the city produce great interference to the 

wireless signal, the vertices of the graph are interconnected 

through fiber backhaul, and the propagation latency between the 

edge clouds is assumed to be load independent. Without loss of 

generality, we take into account a set of edge clouds Ѵ={1,...,M} 

where M is the total quantity of edge clouds, a set of serving 

edge clouds ξ ={1,...ℋ} and ξѴ where ℋ (ℋ M) is the total 

quantity of serving edge clouds, and a set of IoT devices ℱ 

={1,...,Ҡ} where Ҡ is the total quantity of IoT devices. Each 

IoT device i Єℱ has a corresponding mobile user and is 

associated with an edge cloud m∈ξ to which offloading tasks are 

sent. 

C. Edge Server Model 

The edge servers are often deployed inside the edge clouds, 

and then the tasks of the IoT applications can be offloaded by 

nearby IoT devices via one wireless hop. There are N 

heterogeneous edge servers and Q heterogeneous containers or 

virtual machines distributed in different edge clouds of the 

mobile edge computing environment in total, and the quantity 
of the edge servers in set Nm and the containers or virtual 

machines in set Vm,n is different in different edge clouds and 

different edge servers, respectively, where Nm is the set of edge 

servers in the edge cloud m; nm is the n-th edge server of edge 

cloud m where nm𝜖Nm; Vm,n is the set of the containers or virtual 

machines in the n-th edge server of edge cloud m. Each edge 

server owns various types of resources such as CPU, memory, 

and bandwidth, etc. Furthermore, the three resource dimensions 

TABLE Ⅰ. KEY NOTATIONS 

Notation Description 

Ѵ the set of edge clouds including heterogeneous quantity of 

edge servers 

Ԑ the set of network links between the edge clouds 
M the total quantity of edge clouds 

ξ the set of serving edge clouds, ξѴ 

ℋ the total quantity of serving edge clouds 

ℱ the set of IoT devices 

Ҡ the total quantity of IoT devices 

N the number of heterogeneous edge servers 

Q the number of heterogeneous containers or virtual machines 
Nm the set of edge servers in the edge cloud m 

Vm,n the set of the containers or virtual machines in the n-th edge 

server of edge cloud m. 
nm the n-th edge server of edge cloud m where nm𝜖Nm 

Zi the quantity of tasks in the IoT application i 

L the amount of IoT applications offloaded at some point. 
  a batch of IoT applications 

Ni,m the number of available containers or virtual machines in 
the cluster i 

,i mP  
the failure probability of the switch inside the edge cloud m 

associated with the cluster i 
Ei the mathematical expectation of the quantity of available 

containers or virtual machines in the cluster i 

i  
the standard deviation of the number of available 
containers or virtual machines in the cluster i 

T the threshold value of communication delay. 

Φ joint optimization objective 

P the size of the population or the number of islands 

S 
 

the maximum number of species in an island 

sP  the probability that the island X includes exactly s species 
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Fig. 1. Mobile edge computing system 

 
Fig. 2. Mobile edge computing network topology 
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described above can be represented by the set Ʌ = {CPU, mem, 

bw}. Meanwhile, since there are limited amount of the 

computation, memory and bandwidth resources in each edge 

server, only a limited quantity of the IoT applications can be 

processed in it.  

D. Application model 

Consider that an IoT application consists of a set of 

collaborative tasks 0 1{ ,..., }
iZt t   to be executed in some 

containers or virtual machines of multiple edge clouds where Zi 

denotes the quantity of tasks in the IoT application i. The 

dependencies of these tasks can be denoted by a directed acyclic 

graph (DAG), in which a directed link (ta,tb) indicates that the 

task tb must be processed after the task ta. The tasks with 0 

in-degree and 0 out-degree are called the entry task and the exit 

task (e.g., t0 and t6 in Fig. 1), respectively. As a reminder, each 

entry task passes some initial data to the IoT application, and the 

outputs of each exit task are combined to be the computation 

result of the IoT application. When an IoT application is 

generated on an IoT device with a deadline, it will be split into 

some collaborative tasks and offloaded to multiple nearby edge 

clouds, and then transferred to some edge servers according to 

the propagation latency between the edge clouds. Since IoT 

devices appear in the mobile edge computing environment and 

generate the IoT applications in arbitrary order and time, a batch 

of IoT applications can be denoted by the set ={1,...,L} where 

L (L   Ҡ ) is the total amount of IoT applications to be 

offloaded at some point. 

IV. PROBLEM STATEMENT AND FORMULATION 

In this section, we first introduce our problem statement, and 

then propose availability model, resource wastage model of the 

IoT application, and communication delay model, and finally 

introduce an optimization formulation to simultaneously 

minimize the overall resource wastage and unavailability level 

of the task allocation scheme under the condition of certain 

communication delay. 

A. Problem Statement 

The rapid refreshment of IoT devices and the explosion of 

their number have result in a sharp increase in the quantity of 

resource-hungry and delay-sensitive IoT applications. Although 

the resource configuration (e.g., computing, storage, bandwidth 

or battery capacity) of these IoT devices has been greatly 

improved, they still cannot meet the computing requirements of 

these IoT applications. Therefore, an IoT application needs to be 

split into multiple collaborative tasks, which are offloaded onto 

the edge clouds and processed by a cluster of containers or 

virtual machines on the edge servers. Moreover, it makes the 

IoT devices to reduce power consumption and speed up the 

calculation process, and then makes it possible to run emerging 

IoT applications on IoT devices. However, consider that edge 

server resources (such as CPU, memory, and bandwidth) are 

generally more expensive than those in the remote cloud, and 

then edge node (e.g., switch and edge server) failures are quite 

common at edge clouds. One major challenge is how to 

resource-efficiently, delay-sensitively, reliably allocate the 

limited resources from edge servers to these IoT applications 

under the consideration of heterogeneous edge node failure 

probabilities. 

B. Availability Model 

Since edge server and switch failures are common, and own 

the weak correlations and heterogeneity, for the sake of clarity, 

we consider a simple scenario that there is a switch failure and 

an edge server failure in multiple edge clouds. In this case, the 

edge server failure typically results in all containers or virtual 

machines on it to fail, and the switch failure typically results in 

all edge servers connecting it to be inaccessible. Meanwhile, 

when an IoT application of the set  is offloaded to some edge 

clouds, multiple containers or virtual machines with different 

sizes will be requested to process its tasks. Therefore, it is very 

necessary to propose a probability model of the number of 

available containers or virtual machines to reduce the 

unavailability level of the task allocation scheme of the IoT 

application. 

For a given task allocation scheme of IoT application i, these 

tasks are processed by a cluster including Zi containers or 

virtual machines, and encounter two failure events, i.e., edge 

cloud m with switch failure along with no edge server failure 

(i.e., event E1) and concurrently with an edge server failure (i.e., 

event E2). The probability of event E1, E2 and E can be 

calculated by the formulation (1), (2) and (3). 

0 0

1

( 1) (1 )
N

N k l

l

P E C P P


                     (1) 

1 1

1,

( 2) (1 )
N

N k l

l l k

P E C P P
 

                    (2)

 
( ) ( 1) ( 2)P E P E P E                       (3) 

where 
lP  and 

kP  represent the failure probability of different 

edge servers; N can be obtained by mM N . 

The number of unavailable containers or virtual machines in 

this cluster due to the event E1 where edge cloud m with failure 

switch is represented by
1

,

E

i m , which can be calculated by the 

formulation (4). 

, ,1

, , ,

( 1)
( 1| )

( )
m m

m m

m n m nE

i m i j i jn j n j

P E
X P E E X

P E
       (4) 

where the allocation of a container or virtual machine in this 

cluster is represented by
,

,
mm n

i jX ; if the container or virtual 

machine j𝜖�Vm,n of the cluster i is assigned to edge server nm 

belonging to edge cloud m, then
,

, 1mm n

i jX  ; otherwise, 

,

, 0mm n

i jX  . 

To obtain the value of 
2

,

E

i m , two cases are considered: In one 

case, the edge cloud m with failure switch contains the failed 

edge server, and in the other case, the failed edge server is not 

placed in the edge cloud m with failure switch. 
2

,

E

i m is 

computed by adding the sum of containers or virtual machines 

accommodated in the edge cloud m with failure switch to the 

expected number of unavailable containers or virtual machines 

due to an edge server failure outside the edge cloud m, as shown 

in formulation (5). 
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, ,2

, , ,

1 ( 2)

( )
m m

m m

m n m nE

i m i j i j k

n j m n j

M P E
X X P

M P E


 
   
 
    (5) 

When the switch of the edge cloud m fails, the number of 

available containers or virtual machines in the cluster i can be 

represented by Ni,m, which can be computed by the formulation 

(6). 
1 2

, , ,

E E

i m i i m i mN Z                                    (6) 

The mathematical expectation Ei of the quantity of available 

containers or virtual machines in the cluster i can be calculated 

by subtracting the expected quantity of unavailable containers 

or virtual machines from the total quantity of containers or 

virtual machines in the cluster i, as shown in the formulation 

(7). 
1 2

, , , ,

E E

i i i m i m i m i m

m m

E Z P P                        (7) 

where ,i mP represents the failure probability of the switch inside 

the edge cloud m associated with the cluster i; 

Therefore, according to the definition of standard deviation, 

the standard deviation 
i of the number of available containers 

or virtual machines in the cluster i is represented as the 

formulation (8). 

2

,

1
( )

1
i i m i

m

N E
M

  

                         (8) 

Finally, considering that the actual number of available 

containers or virtual machines in this cluster changes from Si-

i to Si+ i , if the standard deviation 
i is larger, the number 

of available containers or virtual machines fluctuates 

significantly. This is, the task allocation scheme of IoT 

application i has higher unavailability, which increases the risk 

of the task allocation failure. Therefore, the normalized 

standard deviation of the quantity of available containers or 

virtual machines is exploited to represent the unavailability 

level of the task allocation scheme of IoT application i, as 

shown in the formulation (9). 

i
i

i

unavailability
E


                          (9) 

C. Resource Wastage Model 

We propose a resource wastage model based on [34], [35] to 

quantify the resource wastage of all dimensions and balance the 

residual resources of the λ-th edge server along different 

dimensions. The resource utilization of the λ-th edge server is 

expressed as the total amount which is occupied by all 

containers or virtual machines hosted on the edge server. One 

resource that is 100% used can cause severe performance 

degradation and trigger a real-time container or virtual machine 

migration that requires additional CPU processing time of the 

migration node [36]. Therefore, all dimension resource 

utilization of the λ-th edge server should be set to an upper 

bound capped at 90%, and then the resource wastage resWλ of 

the λ-th edge server can be calculated by the formulation (10).
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

 

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     (10) 

where the binary variable  represents whether the λ-th edge 

server is in use (value 1) or not (value 0); D represents the total 

quantity of resource type in the set Ʌ; α (or β) represents a kind 

of the resource type in the set Ʌ; R

 and R

 are the demands for 

resource type α and β on the 𝛿�-th container or virtual machine 

of the set Vm,n, respectively. T 

  and T 

  represent the utilization 

threshold of resource type α and β in the λ-th edge server, 

respectively. The binary variable b𝛿�λ indicates whether 𝛿�-th 

container or virtual machine is allocated to the λ-th edge server 

or not, that is, if the 𝛿�-th container or virtual machine is 

allocated to the λ-th edge server, then b𝛿�λ =1, otherwise b𝛿�λ=0.  

D. Latency Model 

When the collaborative tasks of the IoT application i are 

offloaded to the edge clouds, we assume that these tasks are 

first pre-assigned randomly to the containers or virtual 

machines, and then allocated initially the containers or virtual 

machines handling these tasks to the edge servers. If the 

containers or virtual machines handling these tasks are placed 

on different edge servers, these containers or virtual machines 

need to communicate with each other, and increase the 

communication delay of the IoT application i. Since the edge 

clouds communicate with each other through optical fiber, the 

propagation latency between the edge clouds is assumed to be 

load independent. The communication delay between containers 

or virtual machines is mainly determined by the bandwidth and 

the amount of data transferred of the sending containers or 

virtual machines. For the sake of clarity, we consider a simple 

scenario that the IoT devices offload all tasks to the edge servers 

near an edge cloud within a certain period of time, and the 

communication delay from the IoT device to the edge cloud can 

be considered as no change, this is due to that the amount of data 

transmitted between the edge cloud and the IoT device is a 

certain amount. Furthermore, we build a latency model (as 

shown in formulation (11)) based on an IoT application model 

including three tasks, as shown in Fig. 3, in which two tasks are 

sending tasks, and the third task is receiving task and can be 

processed after the results of all sending tasks are transmitted to 

the third task. The latency model represents the sum of the 

communication time taken by two sending tasks, which transfer 

data to the third task through the bandwidth. Although the result 

of the latency model is not all of the application time, it has the 

similar variation pattern as the application completion time. 

Therefore, we only need to consider the communication delay of 

the containers or virtual machines handling the tasks in the IoT 

application i, which are allocated to the different edge servers, as 

shown in the formulation (11). 

,1

i q

i i qq
q

Z data
Latency x

bw
                    (11) 

where bwq and dataq denote the data bandwidth and the amount 

of data sent by the q-th container or virtual machine dealing 

with the IoT application i, respectively; ,i qx indicates whether 

the container or virtual machine hosting the q-th task of the IoT 

application i is a sender, such that , 1i qx  if the q-th container or 

virtual machine is a sender; otherwise, , 0i qx  . 
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E. Problem Formulation 

When IoT devices appear online in a given mobile edge 

computing system and produce a batch of IoT applications at 

some point, each IoT application consists of multiple 

collaborative tasks, which are pre-assigned randomly to the 

containers or virtual machines. These containers or virtual 

machines handling these tasks need to be allocated initially to 

multiple edge servers of the edge clouds by the exploitation of 

one allocation strategy. If these containers or virtual machines 

are allocated to different edge clouds, although the availability 

level is improved, their communication delay and resource 

wastage may be increased to varying degrees. Conversely, the 

more densely they are allocated, the less their resource wastage 

and communication delay, and the lower their availability level. 

That is, if these containers or virtual machines are on the same 

edge server, then they do not occupy the bandwidth resources of 

the edge server, thus there will be very little communication 

delay between them. Instead, if they are not on the same edge 

servers, then they need to exploit some edge server bandwidth 

resources to transfer data, thus increasing the communication 

delay. Similarly, if these containers or virtual machines are on 

different edge servers, then, these edge servers all need to be 

started, thus wasting a large number of resources. In contrast, if 

these containers or virtual machines are distributed across only a 

few edge servers centrally, the resources of those edge servers 

are fully utilized. Furthermore, how to allocate initially these 

containers or virtual machines to the edge clouds has significant 

impact on the resource wastage level of edge computing 

environment, availability level of the task allocation scheme, 

and the communication delay of the tasks in all applications. 

Therefore, we need to find the optimized allocation scheme of 

these IoT applications to simultaneously minimize the 

unavailability level and resource wastage of these edge clouds in 

satisfaction of the limited resource capacity and the certain 

communication delay while processing L IoT applications. 

More specifically, we adopt a joint optimization objective Φ to 

measure the joint optimization problem as shown in the 

formulation (12). 

1 2 31 1 1

L N L

i ii i
resWunavailabilit Latencyy 

  
  

      (12) 

s.t. 
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
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
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
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1, 0  1

N

jz jzz
y y or


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where 1 , 2 , and 3 denote the tunable positive weights; T 

denotes the threshold value of communication delay; 

Formulation (14) shows that the total communication delay for 

all sending tasks of L IoT applications is less than the threshold 

value T; Formulations (15) shows that the total number of tasks 

of L IoT applications is less than the total number of containers 

or virtual machines; Formulation (16) shows that each container 

or virtual machine can only handle any of these tasks, such that 

1tjx  if the t-th task is handled by the j-th container or virtual 

machine; otherwise, 0tjx  ; Formulations (17) to (19) show that 

the total resource demand of the containers or virtual machines 

handling these tasks on the z-th edge server is less than the idle 

resource capacity of the edge server; Formulation (20) shows 

that a container or virtual machine can only be assigned to an 

edge server, such that 1jzy  if the j-th container or virtual 

machine is handled by the z-th edge server; otherwise, 0jzy  . 

V. APPROACH DESIGN 

Since a series of optimization problems are solved by the 

BBO algorithm, which has been proved to be one of the 

fastest-growing biology-based algorithms [37], it is adopted for 

the task allocation of the IoT application. In this section, we 

firstly present the BBO algorithm, then propose our 

improvement scheme including the mapping model and the 

definition of operators, and finally present the scheme of design 

and implementation of the OTAA. 

A. BBO Algorithm 

An archipelago (i.e., ecosystem) including multiple islands 

(i.e., habitats or individuals) represents the population of 

candidate solutions in the BBO algorithm [13]. The Habitat 

Suitability Index (HSI) is affected by the Suitability Index 

Variables (SIVs) (e.g., rainfall, temperature, etc.), and denotes 

the fitness of a candidate solution. Therefore, a vector of SIVs 

denotes a candidate solution. There are two key operators, i.e., 

migration and mutation in the BBO algorithm, in which 

migration operator is a significant feature that distinguishes it 

from other population-based optimization algorithms, and it 

also improves the quality of low-HSI solutions by 

probabilistically sharing SIVs among candidate solutions; and 

then some SIVs in a candidate solution are probabilistically 

replaced with randomly generated new SIVs by the mutation 

operator. 

B. BBO-based Optimized Task Allocation 

To adopt the BBO algorithm, a mapping model is proposed 

to map the optimized task allocation problem of the IoT 

application to an ecosystem (i.e., population), as shown in Fig. 

3. P denotes the size of the population; Latency indicates 

whether the communication delay processing L IoT 
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Fig. 3. The mapping model of BBO algorithm 
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applications is within the time given, such that the value of 

Latency is true if it is within the time given; otherwise, the 

value of Latency is false; Φ1, Φ2, …, ΦP denote the fitness of 

the candidate solutions X1, X2,…, XP, respectively; each SIV 

denotes an edge server to which the collaborative tasks of the 

IoT applications are assigned, and is represented by a dotted 

rectangle; each dotted ellipse denotes an edge cloud including 

some SIVs. All candidate solutions have the same joint 

optimization objective (i.e., formulation (12)) and resource and 

latency constraints. That is, each candidate solution must 

process the L IoT applications in certain communication delay, 
and optimize itself by sharing information with other candidate 

solutions to optimize the whole population.  

Considering the above mapping model and the specific 

features of the optimized task allocation problem of IoT 

application, we then redefine the parameters and operators of 

the BBO algorithm. 

Definition 1 (Migration operator).The migration operator is 

denoted symbolically by   , which is a probabilistic 

operator that modifies island X  according to its emigration rate 

s and immigration rate 
s (as shown in formulation (21)) 

[13],[38]. The formulation (22) denotes the migration operation 

of the ecosystem from island 
kX to island jX . 

 1s

s
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E s S
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         (22) 

where S  denotes the maximum number of species in an island; 

E and I represent the maximum emigration and the maximum 

immigration rate, respectively; jX and 
kX  represent the j-th 

and k-th island of ecosystem, respectively; j and 
k denote the 

immigration rate and emigration rate of the j-th and k-th island, 

respectively; ,jX  denotes the th   SIV of the habitat jX ; ,kX 

denotes the th   SIV of the habitat 
kX ; 

1R and 
2R denote the 

one-off random numbers in (0,1). 

Definition 2 (Mutation operator). The mutation operator is 

represented symbolically by ( )U  , which is a probabilistic 

operator that modifies SIVs of island according to a mutation 

probability sm . The formulation (25) shows that the mutation 

operation of the τ-th SIV in the island sX . 
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where 
sP denotes the probability that the island X includes 

exactly s species, as shown in formulation (23) [39]; 
sm

denotes the mutation probability of the island X , as shown in 

formulation (24); P  and m represent the maximum value of 

the probability 
sP and the mutation probability 

sm , 

respectively; ,sX  denotes a new SIV;
3R denotes the one-off 

random numbers in (0,1).  

Definition 3 (Removal operator). The removal operator is 

denoted symbolically by ( ) , which identify the overloaded 

edge servers of each island and replace them with other edge 

servers in satisfaction of the limited resource capacity and the 

certain communication delay (i.e., 
1

L

ii
Latency


  ). The 

formulation (26) shows that the removal operator generates a 

new island X  by adjusting the island X under the above 

constraints. 

1
( ) ,    

L

ii
LaX X if tency T


               (26) 

Definition 4 (Elitism operator). The elitism operator is 

represented symbolically by ( )E  , which ensures that the best e 

islands are not lost from one generation to the next. The 

formulation (27) shows that the best e islands at the beginning 

of each generation are saved into a set 
1{ ,..., }P e PX X 

, and then 

replace the worst e islands of the new population set X  with 

the set at the end of the generation, while the e islands satisfy 

the resource capacity and the certain communication delay (i.e., 

1

L

ii
Latency T


 ). 

1 2 1( ) { , ,..., } { ,..., }P e P e PE X X X X X X          (27) 

C. Scheme of Design and Implementation of the OTAA 

In this section, we propose the scheme of design and 

implementation of the OTAA with the BBO algorithm to 

simultaneously minimize the unavailability level of task 

allocation scheme and resource wastage of edge servers in 

satisfaction of the limited resource capacity and the certain 

communication delay. The pseudocode of the OTAA is 

presented in Algorithm 1. 
Algorithm 1: Optimized Task Allocation Approach (OTAA) 

Input: All parameters of the IoT applications and the MEC  

Output: the optimized task allocation scheme 

1  Initialize all parameters of BBO algorithm 

2  Initialize P islands randomly 

3  Initialize s , s , sm by the formulation (21), (23), (24) 

4  Order all islands by the   

5   for count=1 to G do 

6        Save the e elite islands 

7        Migrate the non-elite island  , , ,,j j kX X X    

8        Mutate the non-elite island , ,( )s sX U X   

9        Remove the overloaded edge servers ( )X X  

10      Order all islands by the  recomputed. 

11      Replace the e islands with the elites ( )X E X  

12      Reorder all islands by the   

13  end for 

14  return the optimized task allocation scheme 

javascript:void(0);
javascript:void(0);
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All parameters of the OTAA are first initialized in the 

Algorithm 1, and then P islands in the ecosystem are randomly 

initialized in satisfaction of the limited resource capacity in lines 

1-3. Second, it orders these islands by the formulation (12). 

Third, its optimization loop begins, and then saves the e elite 

solutions in line 6. Fourth, each non-elite island is 

probabilistically mutated and modified by the mutation 

operator (i.e., Definition 2) and migration operator (i.e., 

Definition 1), respectively, and then the overloaded edge 

servers in each island are removed by the removal operator (i.e., 

Definition 3).Finally, the   of each island is recalculated to all 

islands of the ecosystem, the worst e islands of the new 

population are replaced with  e elites using the elitism operator 

(i.e., Definition 4), and then jumps to the step 3 for next 

iteration after reordering all islands. The cycle ends at a certain 

number of times (i.e., G). 

VI. PERFORMANCE EVALUATION 

In this section, we build a simulation experiment 

environment to evaluate the performance and effectiveness of 

the OTAA for the IoT applications.
 

A. Experiment Setup 

In our simulation, there are 25 edge clouds equally 

distributed in a 5G network scenario with full mess topology 

based on our extended CloudSim simulator [40],[41]. In this 

scenario, each edge cloud consists of a base station 

interconnected with other base stations via fiber backhaul 

network, a certain number of heterogeneous edge servers 

jointly connected via a switch, and multiple IoT devices via 

wireless access network. Notice that the number of edge servers 

in each edge cloud randomly selects from the integer set [4, 6]. 

The configuration parameter of each edge server randomly 

selects from the set {HP ProLiant G4 (i.e., 4GB of RAM, 3720 

MIPS, 1TB of storage, and 1GB/s network bandwidth), HP 

ProLiant G5 (i.e., 4GB of RAM, 5320 MIPS, 1TB of storage, 

and 1GB/s network bandwidth)}[42], and randomly deployed 

into multiple edge clouds. Considering that  switches and edge 

servers own heterogeneous failure probabilities, their value is 

set randomly between 0.05 ~ 0.15 and 0.02 ~ 0.12 [33], 

respectively. When IoT devices appear online and produce a 

batch of IoT applications at some point, each IoT application 

consists of three collaborative tasks, which are pre-assigned 

randomly to some heterogeneous containers or virtual 

machines. Please note that each container or virtual machine 

can only handle any of these tasks. Since the experimental 

results under the condition of virtual machine case also apply to 

the container case, we only need to discuss the topic of virtual 

machines after this section. The bandwidth requirement of each 

virtual machine randomly selects from the set [10, 50] Mbps. 

The amount of data sent by each virtual machine dealing with 

the IoT application is set randomly in [1, 2] Mb. Its CPU and 

memory requirement randomly select from the set {2000 MIPS 

and 3.75 GB, 500 MIPS and 0.6 GB, 1000 MIPS and 1.7 GB, 

2500 MIPS and 0.85 GB}[42]. Its disk requirement is set at 1 

GB. The population size and generation number G are set at 

100 and 300, respectively. E and I are both assigned to 1, the 

elite number e and the maximum mutation m  are set at 2 and 

0.1, respectively [39], [43]. Moreover, the tunable positive 

weights 1 2 3, ,   are all set at 1/3; the threshold value of 

communication delay T is set at 2s. 

To evaluate the performance and effectiveness of the 

OTAA, we compare the OTAA with the following 

benchmark approaches. 

 Random Allocation (RA): Randomly selects the edge server 

to host each virtual machine when there are multiple edge 

server candidates that satisfy the constraints. 

 First Fit (FF): Selects the edge server that meets the 

resource requirements first to host each virtual machine 

when there are multiple edge server candidates that satisfy 

the constraints. 

 Particle Swarm Optimization (PSO): Selects the edge server 

to host each virtual machine based on particle swarm 

optimization algorithm when there are multiple edge server 

candidates that satisfy the constraints [44]. 

B. Experimental Results and Evaluation 

Next, the performance and effectiveness of the OTAA are 

first compared with the other related approaches in terms of 

unavailability level, resource wastage, and communication 

delay while processing a batch of IoT applications. The effect 

of experiment parameters including the failure ranges of the 

edge server and switch, the number of the base stations, and the 

number of IoT applications are analyzed in the rest of this 

section.  

1) Comparison of Optimization Objectives 

The first group experiment is to compare the OTAA with the 

other three approaches to evaluate its performance in terms of 

unavailability level, resource wastage, and communication 

delay while processing a batch of IoT applications. In this 

section, the number of IoT applications, base stations, edge 

servers and virtual machines were set at 20, 25, 127 and 60, 

respectively; the tunable positive weights 1 2 3, ,   were all set at 

1/3; the failure ranges of the edge server and switch were set 

randomly within 0.02 ~ 0.12 and 0.05 ~ 0.15, respectively; the 

threshold value of communication delay T was set at 2s. 

As shown in Figs. 4 to 6, the average unavailability level of 

FF is the highest of all approaches. This is due to that FF makes 

it very easy to allocate the virtual machines processing an IoT 

application to the same edge server or base station, and then its 

average resource wastage is not the highest. The reason for the 

lower average unavailability level of RA is that these edge 

servers are randomly selected, and the probability of being in 

the same base station is relatively small. Therefore, its average 

resource wastage is the highest of all approaches; instead, its 

average unavailability level is not too high. Since PSO allocates 

each virtual machine to an edge server that provides the least 

increase of the joint optimization objective, its average 

unavailability level, average resource wastage, average 

communication delay are both lower than RA and FF, but it’s 

still higher than OTAA. Although PSO is a heuristic approach 

with good performance, PSO is more likely to cluster in similar 

groups, while the OTAA exploits a new stochastic evolutionary 

algorithm (i.e., BBO) to look for global optimization, its 

solution does not necessarily have an inherent clustering trend. 

Therefore, the average unavailability level for using the OTAA 

is 15%, 52% and 10% less than the three approaches, 

respectively; the average resource wastage for using the OTAA 
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is 199%, 8%, and 6% less than the three approaches, 

respectively; the average communication delay for using the 

OTAA is 44%, 33%, and 13% less than the three approaches, 

respectively. 

 

 

 

 
In next section, we further analyze the impact of the failure 

ranges of the edge server and switch, the number of the base 

stations, and the number of the IoT applications on the 

unavailability level, resource wastage, and communication 

delay of the FF, OTAA, and PSO (as shown in Figs. 7 to 9). 

Please note that since the average communication delay (i.e., 

2.17s) of RA exceeded the threshold value T of communication 

delay, RA will not be discussed below. 

2) Effect of the Failure Ranges of Edge Server and Switch  

Fig. 7 shows the impact of the failure ranges of the edge 

server and switch on the unavailability level. To show this 

effect more clearly, the number of IoT applications, base 

stations, edge servers and virtual machines was set at 20, 25, 

127 and 60, respectively; the tunable positive weights 1 2 3, ,  

were all set at 1/3. With the increase of the failure ranges of the 

edge server and switch (i.e., from range1 (i.e., [0.02, 0.12] and 

[0.05, 0.15]) to range2 (i.e., [0.02, 0.22] and [0.05, 0.25]), the 

average unavailability level of each approach tends to increase 

overall. That is due to that the quantity of high failure 

probabilities for the edge servers and switches in range2 are 

more than the range1. Therefore, when some IoT applications is 

offloaded to the edge clouds with the higher failure 

probabilities for switch and edge server, the average 

availability level of the task allocation scheme is not easily 

guaranteed. However, although the average unavailability level 

of each approach increases as the failure range increases (i.e., 

from range1 to range2), the OTAA is still superior to other 

approaches.  

3) Effect of the Number of Base Stations 

As shown in Fig. 8, these figures display the impact of 

number of base stations on the unavailability level, resource 

wastage, and communication delay. To show this effect more 

clearly, the number of edge servers varied accordingly, i.e., 76, 

101, 127, and 152; the number of the virtual machines was set 

at 60; the number of the IoT applications was set at 20; the 

tunable positive weights 1 2 3, ,   were all set at 1/3; the failure 

probabilities of the edge server and switch were randomly 

selected from the range1 (i.e., [0.02, 0.12] and [0.05, 0.15]), 

respectively; and the number of base stations increased from 15 

to 30 according to 5. By analyzing these figures, we can 

observe that the average resource wastage fluctuates as the 

number of base stations increases, and can be thought of as not 

being much affected. This is due to that the virtual machines 

need to be reallocated as the number of base stations changes. 

Meanwhile, the average unavailability level decreased as the 

number of base stations increases, and the average 

communication delay hardly changed as the number of base 

stations increases. This is due to that there are more edge 

servers with a low failure probability as the number of base 

stations increases. The average unavailability level, average 

resource wastage, and communication delay using the OTAA 

are both the lowest of all approaches. 

 

4) Effect of the Number of IoT Applications 

As shown in Fig. 9, these figures display the impact of 

number of IoT applications on the unavailability level, resource 

wastage, and communication delay. To show this effect more 

clearly, the number of base stations and edge servers was set at 

25 and 127, respectively; the failure probabilities of the edge 

server and switch were randomly selected from the range1 (i.e., 

[0.02, 0.12] and [0.05, 0.15]), respectively; the tunable positive 

 
Fig. 4. Comparison of the unavailability level 

 
Fig. 5. Comparison of the resource wastage 

 
Fig. 6. Comparison of the communication delay 

 
Fig. 7. The effect of different failure ranges of the edge server and switch. 

Each edge server and each switch can be assigned to a fault range (i.e., 

range1 and range2), respectively; the average unavailability level of all 

approaches as the size of the failure range increases. 
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weights 1 2 3, ,   were all set at 1/3; the number of IoT 

applications increased from 5 to 20 according to 5; the number 

of virtual machines increased from 15 to 60 according to 15. By 

analyzing these figures, we can observe that the average 

unavailability level, average resource wastage, and average 

communication delay increased as the number of IoT 

applications increases. The average unavailability level, 

average resource wastage, and average communication delay 

using the OTAA are both the lowest of all approaches.  

VII. CONCLUSIONS AND FUTURE WORK 

With the increasing popularity of the mobile edge computing, 

Edge clouds have become common platforms for offloading 

multiple collaborative tasks of the IoT application. Enhancing 

the availability level and resource utilization of the allocation 

scheme of these tasks under the condition of certain 

communication delay has become a matter of great concern. In 

this paper, we proposed and mathematically established three 

models: 1) one formulates the unavailability level by 

considering the edge severs and switches with heterogeneous 

failure probabilities; 2) another formulates the communication 

delay while dealing with the IoT applications; 3) the third 

formulates the resource wastage. We also proposed a joint 

optimization objective to simultaneously minimize the 

unavailability level and resource wastage under the condition 

of certain communication delay by our proposed approach 

based on BBO algorithm. Finally, we carried out the simulation 

experiments to demonstrate the performance and effectiveness 

of our proposed approach. 

In our future work, we will extend the above optimization 

problem via offloading the tasks of IoT application to the 

remote cloud, and then investigate the influence of the 

sequence of task allocation and the dynamic change of these 

tasks after allocation on the above optimization objectives. 
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