
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091599, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, 2021 1



Abstract—With the rapid upgrading and explosive growth of

Internet of Things (IoT) devices in mobile edge computing, more

and more IoT applications with high resource requirements are

developed and utilized. Meanwhile, there are large quantities of

edge nodes (e.g., switches and edge servers) with limited resources,

higher operating costs, and certain failure probabilities in mobile

edge computing environment. Therefore, when an IoT application

is split into multiple collaborative tasks and offloaded into

multiple edge clouds, there is an urgent need to increase the

availability level of the task allocation scheme and the resource

utilization of edge servers under the condition of certain

communication delay. In this paper, we first present a joint

optimization objective to evaluate the unavailability level,

communication delay, and resource wastage while allocating the

same batch of IoT applications to multiple edge clouds. We then

propose an approach to minimize the joint optimization objective

under the condition of certain communication delay. Finally, we

performed a comprehensive simulation experiment analysis to

demonstrate that our proposed approach is superior to other

related approaches.

Index Terms—mobile edge computing; IoT application;

availability; resource wastage; communication delay

I. INTRODUCTION

ITH the widespread adoption of Internet of Things (IoT)

in electronic medical care, disaster response, smart city,

intelligent transportation, and smart grid [1], IoT devices such

as Raspberry Pi and smartphones are growing in popularity.

Cisco forecasted in 2018 that the quantity of IoT devices in the

world will increase from 8.6 billion in 2017 to 12.3 billion in

2022, in which more than 422 million IoT devices and

connections worldwide will adopt 5G [2]. However, since these

IoT devices typically own limited resources, they cannot satisfy

the computing requirements of IoT applications [3]. Therefore,

mobile edge computing (MEC) emerges as a new computing

paradigm that exploits resources near the IoT devices to

provide services in a timely manner along with the cloud

servers [4]. In MEC, the delay-sensitive and resource-hungry

IoT applications from the IoT devices are usually processed in

Jialei Liu, Bo Wang, and Guowei Gao are with the School of Software

Engineering, Anyang Normal University, Anyang, China (E-mail: {jialeiliu,

bowang, gaoguowei}@aynu.edu.cn).

Chunhong Liu is with the School of Computer and Information Engineering,
Henan Normal University, Xinxiang, China (E-mail: lch@htu.edu.cn).

Shangguang Wang is with the State Key Laboratory of Networking and

Switching technology, Beijing University of Posts and Telecommunications,
Beijing, China (E-mail: sgwang@bupt.edu.cn).

Copyright (c) 2021 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

the edge clouds, which consist of some edge nodes (e.g., edge

servers, switches, IoT gateways, routers, etc.) with computation,

communication, and storage capabilities [5].

Nevertheless, these edge clouds often own the distributed

nature and volatile workload, and lack the advanced support

systems such as air-conditioning units and power generation

equipment that are present in the remote cloud [6]. Therefore,

they have very common software and hardware failures (e.g.,

switch or edge server faults), and then have lower availability

than the remote cloud [6]. Besides the increase of unavailability

level and service level objective violations, these failures can

adversely affect the deployed IoT applications and result in

significant performance degradation of the mobile edge

computing environment. For example, since the response time

of some applications has increased by 500ms, Google

experienced system performance degradation which lead to a

revenue loss of 20 percent [7]. Moreover, because the existing

fault-tolerant mechanisms in the remote cloud typically

consume lots of resources, and there are some limited power

capacity and small processors in the edge clouds, the existing

fault-tolerant mechanisms in the remote cloud are not easy to be

applied to the edge clouds [8]. Therefore, how to obtain a high

available and resource-efficient task allocation scheme under

the condition of certain communication delay is an urgent

problem that requires immediate attention [9].

The resource-hungry and delay-sensitive IoT applications

are often split onto multiple collaborative tasks that can be

independently designed, developed, deployed, and maintained,

and then offloaded to the edge servers for processing by

multiple containers or virtual machines [10],[11]. Although

these edge servers to be selected all work, if there is no

availability assessment of allocation scheme of these tasks,

some edge servers that are not suitable for running these

containers or virtual machines can deteriorate or even go down

[12]. Therefore, lack of the availability assessment will further

lead to the edge cloud availability with high uncertainty. At

present, there are no researches carrying on the availability

assessment of task allocation of IoT application, which makes

the availability of edge servers very different from the ideal

situation. This is, if the availability level of the task allocation

scheme is not effectively guaranteed over the long term, the

deployment of the IoT application will ultimately fail.

In order to address the above issues, in this paper, we

introduce an Optimized Task Allocation Approach (OTAA) of

IoT application based on biogeography-based optimization

algorithm (BBO) [13] to simultaneously maximize the

availability level of task allocation scheme and resource

utilization of edge servers under the condition of certain

communication delay. To find the equilibrium between the

Optimized Task Allocation for IoT Application

in Mobile Edge Computing

Jialei Liu, Chunhong Liu, Bo Wang, Guowei Gao, Shangguang Wang, Senior Member, IEEE

W

mailto:sgwang@bupt.edu.cn

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091599, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, 2021 2

aforementioned objectives, we model the unavailability level,

communication delay and the resource wastage, and establish a

joint optimization function of them.

Our main contributions of this paper include:

 The optimized task allocation problem of the IoT application

as described above is formulated, and converted to three

contradictory problems which are solved by the

unavailability level model, latency model, and resource

wastage model.

 On the basis of the above three models, a joint optimization

model is first established to measure the unavailability level

of task allocation scheme, the communication delay dealing

with the IoT applications, and the resource wastage of edge

servers. Then, we present the OTAA to minimize the joint

optimization objective, i.e., simultaneously maximize the

availability level and resource utilization under the

condition of certain communication delay.

 We build a mobile edge computing system model, and

conduct a comprehensive performance evaluation of our

proposed approach. The simulation experiment results

demonstrate that our proposed approach can achieve

flexible equilibrium among the unavailability level and

resource wastage under the condition of certain

communication delay.

Organization. Section Ⅱ presents related work; Section Ⅲ

proposes our system model; Section Ⅳ introduces our research

problem and problem formulation; Section Ⅴ introduces the

design and implementation of our proposed approach; Section

Ⅵ conducts the simulation experiments; Finally, Section Ⅶ

presents conclusions of this paper along with our future work.

II. RELATED WORK

As part of an emerging 5G network, edge cloud has become

one of the key enablers for providing the critical IoT services

(e.g., content delivery and IoT applications). When these

services are offloaded to the edge clouds, the availability level

of task allocation scheme of these services, communication

delay dealing with the IoT applications, and the resource

utilization of edge servers handling these services are pressing

issues that need to be improved. At present, there are numerous

research works to study them.

For the service availability in multiple edge clouds, Aral et al.

[6] exploited the historical failure data to obtain dependencies

between failures and model their effect on edge virtual machine

availability through a Bayesian networks. Similarly, Soualhia

et al. [7] analyzed the data from the edge computing

environment via supervised machine learning and statistical

techniques to detect and predict the faults at infrastructure-level

of edge clouds. Zhu et al. [12] modeled the availability and

inter-host network bandwidth cost effect from different

placement policy of the mobile edge applications, and the

availability level is improved by separating virtual machines of

the mobile edge application. Similarly, Yao et al. [14]

investigated the equilibrium between maximizing the reliability

of virtual machines and minimizing the virtual machine rentals

for fog resource provisioning in IoT networks. Furthermore,

Maia et al. [15] minimized response time deadline violation,

operational cost, and unavailability by investigating how to

deploy replicas of applications and requests among these

replicas. However, the above research works did not consider

the effect of the edge node (e.g., switch and edge server) failure

probabilities on the availability level of task allocation scheme

of the IoT applications, and the effect of the different task

allocation schemes on the resource utilization of edge clouds

and the communication delay dealing with the IoT applications.

For the resource utilization of edge clouds, Oueis et al. [16]

introduced a customizable algorithm of low complexity small

cell clusters establishment and resources management in the

case of the consideration of the multi-user computation

offloading. Zhao et al. [17] allocated virtual machine replica

copies of the IoT application to the edge computing

environment via a new framework to minimize the average data

traffic. Hu et al. [18] researched the service allocation problem

in mobile edge computing to find the equilibrium between load

balance and average network delay. Xie et al. [19] proposed an

efficient retrieval service and data placement for edge

computing to realize the effective control of routing path

lengths, forwarding table sizes, and the load balance. Moreover,

Pasteris et al. [20] focused on multiple services place problem

in a heterogeneous mobile edge computing environment to

maximize the total system reward. Farhadi et al. [21] jointly

optimized request scheduling and service (data & code)

placement to serve time-varying demands under the

consideration of system stability and operation cost in a

two-time-scale framework. Chen et al. [22] minimized the

latency for IoT devices and the monetary cost for Application

Service Providers by formulating data-intensive application

edge allocation approach. Furthermore, Meng et al. [23]

introduced an online algorithm to greedily schedule newly

arriving tasks and satisfy the new deadlines by considering

whether to take the place of multiple existing tasks. Chen et al.

[24] minimized the response time of the data-intensive edge

application allocation under storage constraints and load

balancing conditions by introducing a data-intensive

application allocation policy with genetic algorithm. Khan et al.

[25] introduced a mathematical model to calculate the overall

computational time and energy consumption of mobile cloud

application models. Guo et al. [26] carried out the assignment

of tasks in an online fashion to realize an optimal power-delay

equilibrium in the system by designing policies. Maia et al. [27]

minimized the potential violation of their QoS requirements by

jointly investigating the load distribution and placement of

scalable IoT applications. Goudarzi et al. [28] minimized the

execution time and energy consumption of IoT applications by

exploiting a new application placement technique with the

memetic algorithm to realize batch application placement. Peng

et al. [29] proposed an end-edge-cloud collaborative computing

offloading approach based on improved Strength Pareto

Evolutionary algorithm to minimize simultaneously time

consumption and energy consumption of mobile users, and

resource utilization of edge servers. Cheng et al. [30] proposed

three algorithms to reduce the latency and energy consumption

in data shared mobile edge computing systems by studying the

task assignment algorithm. Although these research works have

studied various types of resource consumption and latency or

response time in edge computing environment, they have not

considered the balance between resource wastage of edge

servers and availability level of task allocation scheme of IoT

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091599, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, 2021 3

application under the condition of certain communication

delay.

Different from the above study, we firstly model the

unavailability level of task allocation scheme, the

communication delay dealing with the IoT applications, and the

resource wastage of edge servers in multiple edge clouds with

fiber backhaul network. Then, we propose the joint

optimization problem and solve it by the OTAA under the

condition of the contradictory relation of resource utilization,

communication delay and availability level. For ease of

understanding, Table Ⅰ lists the key notations in this paper.

III. SYSTEM MODEL

In this section, we will propose our system model of the

mobile edge computing environment.

A. System Description

As shown in Fig. 1, we build a mobile edge computing

system including multiple edge clouds (ECs) connected together

via fiber backhaul network using full mesh topology [31], [32].

Each edge cloud is endowed with computational and storage

capacities by deploying some heterogeneous edge servers

interconnected using switches, and accessed via a small cell

base station covering a specified area that can receive and

forward offloading requests from IoT devices. Each application

service providers can rent the small cell base stations from

communication facility providers to deploy IoT applications, in

which each IoT application consists of a set of indivisible tasks

to be executed in some edge clouds. As we all know that switch

failures take up most of the downtime in remote cloud data

centers [33], and thus each edge cloud is called an individual

fault domain in our system.

B. Network Model

As shown in Fig.2, the mobile edge computing network

topology is modeled as an undirected graph denoted by G =

(Ѵ,Ԑ), where the vertices Ѵ and the edges Ԑ represent the set of

edge clouds including heterogeneous quantity of edge servers

and network links between the edge clouds, respectively. Since

the tall buildings in the city produce great interference to the

wireless signal, the vertices of the graph are interconnected

through fiber backhaul, and the propagation latency between the

edge clouds is assumed to be load independent. Without loss of

generality, we take into account a set of edge clouds Ѵ={1,...,M}

where M is the total quantity of edge clouds, a set of serving

edge clouds ξ ={1,...ℋ} and ξѴ where ℋ (ℋ M) is the total

quantity of serving edge clouds, and a set of IoT devices ℱ

={1,...,Ҡ} where Ҡ is the total quantity of IoT devices. Each

IoT device i Єℱ has a corresponding mobile user and is

associated with an edge cloud m∈ξ to which offloading tasks are

sent.

C. Edge Server Model

The edge servers are often deployed inside the edge clouds,

and then the tasks of the IoT applications can be offloaded by

nearby IoT devices via one wireless hop. There are N

heterogeneous edge servers and Q heterogeneous containers or

virtual machines distributed in different edge clouds of the

mobile edge computing environment in total, and the quantity
of the edge servers in set Nm and the containers or virtual

machines in set Vm,n is different in different edge clouds and

different edge servers, respectively, where Nm is the set of edge

servers in the edge cloud m; nm is the n-th edge server of edge

cloud m where nm𝜖Nm; Vm,n is the set of the containers or virtual

machines in the n-th edge server of edge cloud m. Each edge

server owns various types of resources such as CPU, memory,

and bandwidth, etc. Furthermore, the three resource dimensions

TABLE Ⅰ. KEY NOTATIONS

Notation Description

Ѵ the set of edge clouds including heterogeneous quantity of

edge servers

Ԑ the set of network links between the edge clouds
M the total quantity of edge clouds

ξ the set of serving edge clouds, ξѴ

ℋ the total quantity of serving edge clouds

ℱ the set of IoT devices

Ҡ the total quantity of IoT devices

N the number of heterogeneous edge servers

Q the number of heterogeneous containers or virtual machines
Nm the set of edge servers in the edge cloud m

Vm,n the set of the containers or virtual machines in the n-th edge

server of edge cloud m.
nm the n-th edge server of edge cloud m where nm𝜖Nm

Zi the quantity of tasks in the IoT application i

L the amount of IoT applications offloaded at some point.
 a batch of IoT applications

Ni,m the number of available containers or virtual machines in
the cluster i

,i mP
the failure probability of the switch inside the edge cloud m

associated with the cluster i
Ei the mathematical expectation of the quantity of available

containers or virtual machines in the cluster i

i
the standard deviation of the number of available
containers or virtual machines in the cluster i

T the threshold value of communication delay.

Φ joint optimization objective

P the size of the population or the number of islands

S 

the maximum number of species in an island

sP the probability that the island X includes exactly s species

Remote
cloud

Fiber backhaul network

IoT application

5

21

0

6

1 3 0
5

6

EC EC EC

3
4

4
2

Fig. 1. Mobile edge computing system

Fig. 2. Mobile edge computing network topology

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091599, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, 2021 4

described above can be represented by the set Ʌ = {CPU, mem,

bw}. Meanwhile, since there are limited amount of the

computation, memory and bandwidth resources in each edge

server, only a limited quantity of the IoT applications can be

processed in it.

D. Application model

Consider that an IoT application consists of a set of

collaborative tasks 0 1{ ,..., }
iZt t  to be executed in some

containers or virtual machines of multiple edge clouds where Zi

denotes the quantity of tasks in the IoT application i. The

dependencies of these tasks can be denoted by a directed acyclic

graph (DAG), in which a directed link (ta,tb) indicates that the

task tb must be processed after the task ta. The tasks with 0

in-degree and 0 out-degree are called the entry task and the exit

task (e.g., t0 and t6 in Fig. 1), respectively. As a reminder, each

entry task passes some initial data to the IoT application, and the

outputs of each exit task are combined to be the computation

result of the IoT application. When an IoT application is

generated on an IoT device with a deadline, it will be split into

some collaborative tasks and offloaded to multiple nearby edge

clouds, and then transferred to some edge servers according to

the propagation latency between the edge clouds. Since IoT

devices appear in the mobile edge computing environment and

generate the IoT applications in arbitrary order and time, a batch

of IoT applications can be denoted by the set ={1,...,L} where

L (L  Ҡ) is the total amount of IoT applications to be

offloaded at some point.

IV. PROBLEM STATEMENT AND FORMULATION

In this section, we first introduce our problem statement, and

then propose availability model, resource wastage model of the

IoT application, and communication delay model, and finally

introduce an optimization formulation to simultaneously

minimize the overall resource wastage and unavailability level

of the task allocation scheme under the condition of certain

communication delay.

A. Problem Statement

The rapid refreshment of IoT devices and the explosion of

their number have result in a sharp increase in the quantity of

resource-hungry and delay-sensitive IoT applications. Although

the resource configuration (e.g., computing, storage, bandwidth

or battery capacity) of these IoT devices has been greatly

improved, they still cannot meet the computing requirements of

these IoT applications. Therefore, an IoT application needs to be

split into multiple collaborative tasks, which are offloaded onto

the edge clouds and processed by a cluster of containers or

virtual machines on the edge servers. Moreover, it makes the

IoT devices to reduce power consumption and speed up the

calculation process, and then makes it possible to run emerging

IoT applications on IoT devices. However, consider that edge

server resources (such as CPU, memory, and bandwidth) are

generally more expensive than those in the remote cloud, and

then edge node (e.g., switch and edge server) failures are quite

common at edge clouds. One major challenge is how to

resource-efficiently, delay-sensitively, reliably allocate the

limited resources from edge servers to these IoT applications

under the consideration of heterogeneous edge node failure

probabilities.

B. Availability Model

Since edge server and switch failures are common, and own

the weak correlations and heterogeneity, for the sake of clarity,

we consider a simple scenario that there is a switch failure and

an edge server failure in multiple edge clouds. In this case, the

edge server failure typically results in all containers or virtual

machines on it to fail, and the switch failure typically results in

all edge servers connecting it to be inaccessible. Meanwhile,

when an IoT application of the set is offloaded to some edge

clouds, multiple containers or virtual machines with different

sizes will be requested to process its tasks. Therefore, it is very

necessary to propose a probability model of the number of

available containers or virtual machines to reduce the

unavailability level of the task allocation scheme of the IoT

application.

For a given task allocation scheme of IoT application i, these

tasks are processed by a cluster including Zi containers or

virtual machines, and encounter two failure events, i.e., edge

cloud m with switch failure along with no edge server failure

(i.e., event E1) and concurrently with an edge server failure (i.e.,

event E2). The probability of event E1, E2 and E can be

calculated by the formulation (1), (2) and (3).

0 0

1

(1) (1)
N

N k l

l

P E C P P


  (1)

1 1

1,

(2) (1)
N

N k l

l l k

P E C P P
 

  (2)

() (1) (2)P E P E P E  (3)

where
lP and

kP represent the failure probability of different

edge servers; N can be obtained by mM N .

The number of unavailable containers or virtual machines in

this cluster due to the event E1 where edge cloud m with failure

switch is represented by
1

,

E

i m , which can be calculated by the

formulation (4).

, ,1

, , ,

(1)
(1|)

()
m m

m m

m n m nE

i m i j i jn j n j

P E
X P E E X

P E
      (4)

where the allocation of a container or virtual machine in this

cluster is represented by
,

,
mm n

i jX ; if the container or virtual

machine j𝜖�Vm,n of the cluster i is assigned to edge server nm

belonging to edge cloud m, then
,

, 1mm n

i jX  ; otherwise,

,

, 0mm n

i jX  .

To obtain the value of
2

,

E

i m , two cases are considered: In one

case, the edge cloud m with failure switch contains the failed

edge server, and in the other case, the failed edge server is not

placed in the edge cloud m with failure switch.
2

,

E

i m is

computed by adding the sum of containers or virtual machines

accommodated in the edge cloud m with failure switch to the

expected number of unavailable containers or virtual machines

due to an edge server failure outside the edge cloud m, as shown

in formulation (5).

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091599, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, 2021 5

, ,2

, , ,

1 (2)

()
m m

m m

m n m nE

i m i j i j k

n j m n j

M P E
X X P

M P E


 
   
 
  (5)

When the switch of the edge cloud m fails, the number of

available containers or virtual machines in the cluster i can be

represented by Ni,m, which can be computed by the formulation

(6).
1 2

, , ,

E E

i m i i m i mN Z     (6)

The mathematical expectation Ei of the quantity of available

containers or virtual machines in the cluster i can be calculated

by subtracting the expected quantity of unavailable containers

or virtual machines from the total quantity of containers or

virtual machines in the cluster i, as shown in the formulation

(7).
1 2

, , , ,

E E

i i i m i m i m i m

m m

E Z P P     (7)

where ,i mP represents the failure probability of the switch inside

the edge cloud m associated with the cluster i;

Therefore, according to the definition of standard deviation,

the standard deviation
i of the number of available containers

or virtual machines in the cluster i is represented as the

formulation (8).

2

,

1
()

1
i i m i

m

N E
M

  

 (8)

Finally, considering that the actual number of available

containers or virtual machines in this cluster changes from Si-

i to Si+ i , if the standard deviation
i is larger, the number

of available containers or virtual machines fluctuates

significantly. This is, the task allocation scheme of IoT

application i has higher unavailability, which increases the risk

of the task allocation failure. Therefore, the normalized

standard deviation of the quantity of available containers or

virtual machines is exploited to represent the unavailability

level of the task allocation scheme of IoT application i, as

shown in the formulation (9).

i
i

i

unavailability
E


 (9)

C. Resource Wastage Model

We propose a resource wastage model based on [34], [35] to

quantify the resource wastage of all dimensions and balance the

residual resources of the λ-th edge server along different

dimensions. The resource utilization of the λ-th edge server is

expressed as the total amount which is occupied by all

containers or virtual machines hosted on the edge server. One

resource that is 100% used can cause severe performance

degradation and trigger a real-time container or virtual machine

migration that requires additional CPU processing time of the

migration node [36]. Therefore, all dimension resource

utilization of the λ-th edge server should be set to an upper

bound capped at 90%, and then the resource wastage resWλ of

the λ-th edge server can be calculated by the formulation (10).

   

   

1 1

1

1 1

Q Q

D

Q Q

T b R T b R

resW
D

b R b R

   

     

 


   

   

 

  

 

 

   
     

   
 



 


 

 (10)

where the binary variable  represents whether the λ-th edge

server is in use (value 1) or not (value 0); D represents the total

quantity of resource type in the set Ʌ; α (or β) represents a kind

of the resource type in the set Ʌ; R

 and R

 are the demands for

resource type α and β on the 𝛿�-th container or virtual machine

of the set Vm,n, respectively. T 

 and T 

 represent the utilization

threshold of resource type α and β in the λ-th edge server,

respectively. The binary variable b𝛿�λ indicates whether 𝛿�-th

container or virtual machine is allocated to the λ-th edge server

or not, that is, if the 𝛿�-th container or virtual machine is

allocated to the λ-th edge server, then b𝛿�λ =1, otherwise b𝛿�λ=0.

D. Latency Model

When the collaborative tasks of the IoT application i are

offloaded to the edge clouds, we assume that these tasks are

first pre-assigned randomly to the containers or virtual

machines, and then allocated initially the containers or virtual

machines handling these tasks to the edge servers. If the

containers or virtual machines handling these tasks are placed

on different edge servers, these containers or virtual machines

need to communicate with each other, and increase the

communication delay of the IoT application i. Since the edge

clouds communicate with each other through optical fiber, the

propagation latency between the edge clouds is assumed to be

load independent. The communication delay between containers

or virtual machines is mainly determined by the bandwidth and

the amount of data transferred of the sending containers or

virtual machines. For the sake of clarity, we consider a simple

scenario that the IoT devices offload all tasks to the edge servers

near an edge cloud within a certain period of time, and the

communication delay from the IoT device to the edge cloud can

be considered as no change, this is due to that the amount of data

transmitted between the edge cloud and the IoT device is a

certain amount. Furthermore, we build a latency model (as

shown in formulation (11)) based on an IoT application model

including three tasks, as shown in Fig. 3, in which two tasks are

sending tasks, and the third task is receiving task and can be

processed after the results of all sending tasks are transmitted to

the third task. The latency model represents the sum of the

communication time taken by two sending tasks, which transfer

data to the third task through the bandwidth. Although the result

of the latency model is not all of the application time, it has the

similar variation pattern as the application completion time.

Therefore, we only need to consider the communication delay of

the containers or virtual machines handling the tasks in the IoT

application i, which are allocated to the different edge servers, as

shown in the formulation (11).

,1

i q

i i qq
q

Z data
Latency x

bw
 (11)

where bwq and dataq denote the data bandwidth and the amount

of data sent by the q-th container or virtual machine dealing

with the IoT application i, respectively; ,i qx indicates whether

the container or virtual machine hosting the q-th task of the IoT

application i is a sender, such that , 1i qx  if the q-th container or

virtual machine is a sender; otherwise, , 0i qx  .

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091599, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, 2021 6

E. Problem Formulation

When IoT devices appear online in a given mobile edge

computing system and produce a batch of IoT applications at

some point, each IoT application consists of multiple

collaborative tasks, which are pre-assigned randomly to the

containers or virtual machines. These containers or virtual

machines handling these tasks need to be allocated initially to

multiple edge servers of the edge clouds by the exploitation of

one allocation strategy. If these containers or virtual machines

are allocated to different edge clouds, although the availability

level is improved, their communication delay and resource

wastage may be increased to varying degrees. Conversely, the

more densely they are allocated, the less their resource wastage

and communication delay, and the lower their availability level.

That is, if these containers or virtual machines are on the same

edge server, then they do not occupy the bandwidth resources of

the edge server, thus there will be very little communication

delay between them. Instead, if they are not on the same edge

servers, then they need to exploit some edge server bandwidth

resources to transfer data, thus increasing the communication

delay. Similarly, if these containers or virtual machines are on

different edge servers, then, these edge servers all need to be

started, thus wasting a large number of resources. In contrast, if

these containers or virtual machines are distributed across only a

few edge servers centrally, the resources of those edge servers

are fully utilized. Furthermore, how to allocate initially these

containers or virtual machines to the edge clouds has significant

impact on the resource wastage level of edge computing

environment, availability level of the task allocation scheme,

and the communication delay of the tasks in all applications.

Therefore, we need to find the optimized allocation scheme of

these IoT applications to simultaneously minimize the

unavailability level and resource wastage of these edge clouds in

satisfaction of the limited resource capacity and the certain

communication delay while processing L IoT applications.

More specifically, we adopt a joint optimization objective Φ to

measure the joint optimization problem as shown in the

formulation (12).

1 2 31 1 1

L N L

i ii i
resWunavailabilit Latencyy 

  
  

      (12)

s.t.

1 2 3 1 2 30 , , 1, and 1          (13)

1

L

ii
Latency T


 (14)

1

L

ii
Z Q


 (15)

1

11
max() 1, 0 1

L

ii

Q

Z

tj tjtj
x x or

 

   (16)

1

1

L

ii
Z CPU CPU

j jz zj
D y C



  (17)

1

1

L

ii
Z mem mem

j jz zj
D y C



  (18)

1

1

L

ii
Z bw bw

j jz zj
D y C



  (19)

1
1, 0 1

N

jz jzz
y y or


  (20)

where 1 , 2 , and 3 denote the tunable positive weights; T

denotes the threshold value of communication delay;

Formulation (14) shows that the total communication delay for

all sending tasks of L IoT applications is less than the threshold

value T; Formulations (15) shows that the total number of tasks

of L IoT applications is less than the total number of containers

or virtual machines; Formulation (16) shows that each container

or virtual machine can only handle any of these tasks, such that

1tjx  if the t-th task is handled by the j-th container or virtual

machine; otherwise, 0tjx  ; Formulations (17) to (19) show that

the total resource demand of the containers or virtual machines

handling these tasks on the z-th edge server is less than the idle

resource capacity of the edge server; Formulation (20) shows

that a container or virtual machine can only be assigned to an

edge server, such that 1jzy  if the j-th container or virtual

machine is handled by the z-th edge server; otherwise, 0jzy  .

V. APPROACH DESIGN

Since a series of optimization problems are solved by the

BBO algorithm, which has been proved to be one of the

fastest-growing biology-based algorithms [37], it is adopted for

the task allocation of the IoT application. In this section, we

firstly present the BBO algorithm, then propose our

improvement scheme including the mapping model and the

definition of operators, and finally present the scheme of design

and implementation of the OTAA.

A. BBO Algorithm

An archipelago (i.e., ecosystem) including multiple islands

(i.e., habitats or individuals) represents the population of

candidate solutions in the BBO algorithm [13]. The Habitat

Suitability Index (HSI) is affected by the Suitability Index

Variables (SIVs) (e.g., rainfall, temperature, etc.), and denotes

the fitness of a candidate solution. Therefore, a vector of SIVs

denotes a candidate solution. There are two key operators, i.e.,

migration and mutation in the BBO algorithm, in which

migration operator is a significant feature that distinguishes it

from other population-based optimization algorithms, and it

also improves the quality of low-HSI solutions by

probabilistically sharing SIVs among candidate solutions; and

then some SIVs in a candidate solution are probabilistically

replaced with randomly generated new SIVs by the mutation

operator.

B. BBO-based Optimized Task Allocation

To adopt the BBO algorithm, a mapping model is proposed

to map the optimized task allocation problem of the IoT

application to an ecosystem (i.e., population), as shown in Fig.

3. P denotes the size of the population; Latency indicates

whether the communication delay processing L IoT

t3

t2

t1

IoT application1

island
(habitat)

SIVs

Latency
HSI

(fitness)

t6

t5

t4 tL+3

tL+2

tL+1

X1

X2

XP

t1 t3 t2 t4 t5t6 tL+1 tL+2 tL+3 true

tL+2 tL+3tL+1t2 t5

t3 tL+1 t4 tL+2t1

t1

t2

t4 t3 t6

t6 t5tL+3

Φ1

Φ2

ΦP

--------- --- ------------ ------

IoT application2 IoT applicationL

Edge cloudEdge server

true

true

Fig. 3. The mapping model of BBO algorithm

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091599, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, 2021 7

applications is within the time given, such that the value of

Latency is true if it is within the time given; otherwise, the

value of Latency is false; Φ1, Φ2, …, ΦP denote the fitness of

the candidate solutions X1, X2,…, XP, respectively; each SIV

denotes an edge server to which the collaborative tasks of the

IoT applications are assigned, and is represented by a dotted

rectangle; each dotted ellipse denotes an edge cloud including

some SIVs. All candidate solutions have the same joint

optimization objective (i.e., formulation (12)) and resource and

latency constraints. That is, each candidate solution must

process the L IoT applications in certain communication delay,
and optimize itself by sharing information with other candidate

solutions to optimize the whole population.

Considering the above mapping model and the specific

features of the optimized task allocation problem of IoT

application, we then redefine the parameters and operators of

the BBO algorithm.

Definition 1 (Migration operator).The migration operator is

denoted symbolically by   , which is a probabilistic

operator that modifies island X according to its emigration rate

s and immigration rate
s (as shown in formulation (21))

[13],[38]. The formulation (22) denotes the migration operation

of the ecosystem from island
kX to island jX .

 1s

s

I s S

E s S









   


 

 (21)

 
, 1 2

, ,

,

, if >R and >R
,

, otherwise

k j k

j k

j

X
X X

X



 



 
 


 (22)

where S  denotes the maximum number of species in an island;

E and I represent the maximum emigration and the maximum

immigration rate, respectively; jX and
kX represent the j-th

and k-th island of ecosystem, respectively; j and
k denote the

immigration rate and emigration rate of the j-th and k-th island,

respectively; ,jX  denotes the th  SIV of the habitat jX ; ,kX 

denotes the th  SIV of the habitat
kX ;

1R and
2R denote the

one-off random numbers in (0,1).

Definition 2 (Mutation operator). The mutation operator is

represented symbolically by ()U  , which is a probabilistic

operator that modifies SIVs of island according to a mutation

probability sm . The formulation (25) shows that the mutation

operation of the τ-th SIV in the island sX .

0 1 1

1 1 2

0 1 1

0 1 1
1 2

1 1 2

1
, s 0

...
1

...

...
, 1

...
... 1

...

d

d d

s

s

d

d

S

s

d

S

P

Ss

  

  

  

  
  

  




















 


 
  
  

 
  





 (23)

1 s
s

P
m m

P





 
   

 
 (24)

, s 3

,

,

, if m
()

, otherwise

s

s

s

X R
U X

X







 
 


 (25)

where
sP denotes the probability that the island X includes

exactly s species, as shown in formulation (23) [39];
sm

denotes the mutation probability of the island X , as shown in

formulation (24); P and m represent the maximum value of

the probability
sP and the mutation probability

sm ,

respectively; ,sX  denotes a new SIV;
3R denotes the one-off

random numbers in (0,1).

Definition 3 (Removal operator). The removal operator is

denoted symbolically by () , which identify the overloaded

edge servers of each island and replace them with other edge

servers in satisfaction of the limited resource capacity and the

certain communication delay (i.e.,
1

L

ii
Latency


 ). The

formulation (26) shows that the removal operator generates a

new island X by adjusting the island X under the above

constraints.

1
() ,

L

ii
LaX X if tency T


  (26)

Definition 4 (Elitism operator). The elitism operator is

represented symbolically by ()E  , which ensures that the best e

islands are not lost from one generation to the next. The

formulation (27) shows that the best e islands at the beginning

of each generation are saved into a set
1{ ,..., }P e PX X 

, and then

replace the worst e islands of the new population set X with

the set at the end of the generation, while the e islands satisfy

the resource capacity and the certain communication delay (i.e.,

1

L

ii
Latency T


).

1 2 1() { , ,..., } { ,..., }P e P e PE X X X X X X    (27)

C. Scheme of Design and Implementation of the OTAA

In this section, we propose the scheme of design and

implementation of the OTAA with the BBO algorithm to

simultaneously minimize the unavailability level of task

allocation scheme and resource wastage of edge servers in

satisfaction of the limited resource capacity and the certain

communication delay. The pseudocode of the OTAA is

presented in Algorithm 1.
Algorithm 1: Optimized Task Allocation Approach (OTAA)

Input: All parameters of the IoT applications and the MEC

Output: the optimized task allocation scheme

1 Initialize all parameters of BBO algorithm

2 Initialize P islands randomly

3 Initialize s , s , sm by the formulation (21), (23), (24)

4 Order all islands by the 

5 for count=1 to G do

6 Save the e elite islands

7 Migrate the non-elite island  , , ,,j j kX X X  

8 Mutate the non-elite island , ,()s sX U X 

9 Remove the overloaded edge servers ()X X

10 Order all islands by the recomputed.

11 Replace the e islands with the elites ()X E X

12 Reorder all islands by the 

13 end for

14 return the optimized task allocation scheme

javascript:void(0);
javascript:void(0);

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091599, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, 2021 8

All parameters of the OTAA are first initialized in the

Algorithm 1, and then P islands in the ecosystem are randomly

initialized in satisfaction of the limited resource capacity in lines

1-3. Second, it orders these islands by the formulation (12).

Third, its optimization loop begins, and then saves the e elite

solutions in line 6. Fourth, each non-elite island is

probabilistically mutated and modified by the mutation

operator (i.e., Definition 2) and migration operator (i.e.,

Definition 1), respectively, and then the overloaded edge

servers in each island are removed by the removal operator (i.e.,

Definition 3).Finally, the  of each island is recalculated to all

islands of the ecosystem, the worst e islands of the new

population are replaced with e elites using the elitism operator

(i.e., Definition 4), and then jumps to the step 3 for next

iteration after reordering all islands. The cycle ends at a certain

number of times (i.e., G).

VI. PERFORMANCE EVALUATION

In this section, we build a simulation experiment

environment to evaluate the performance and effectiveness of

the OTAA for the IoT applications.

A. Experiment Setup

In our simulation, there are 25 edge clouds equally

distributed in a 5G network scenario with full mess topology

based on our extended CloudSim simulator [40],[41]. In this

scenario, each edge cloud consists of a base station

interconnected with other base stations via fiber backhaul

network, a certain number of heterogeneous edge servers

jointly connected via a switch, and multiple IoT devices via

wireless access network. Notice that the number of edge servers

in each edge cloud randomly selects from the integer set [4, 6].

The configuration parameter of each edge server randomly

selects from the set {HP ProLiant G4 (i.e., 4GB of RAM, 3720

MIPS, 1TB of storage, and 1GB/s network bandwidth), HP

ProLiant G5 (i.e., 4GB of RAM, 5320 MIPS, 1TB of storage,

and 1GB/s network bandwidth)}[42], and randomly deployed

into multiple edge clouds. Considering that switches and edge

servers own heterogeneous failure probabilities, their value is

set randomly between 0.05 ~ 0.15 and 0.02 ~ 0.12 [33],

respectively. When IoT devices appear online and produce a

batch of IoT applications at some point, each IoT application

consists of three collaborative tasks, which are pre-assigned

randomly to some heterogeneous containers or virtual

machines. Please note that each container or virtual machine

can only handle any of these tasks. Since the experimental

results under the condition of virtual machine case also apply to

the container case, we only need to discuss the topic of virtual

machines after this section. The bandwidth requirement of each

virtual machine randomly selects from the set [10, 50] Mbps.

The amount of data sent by each virtual machine dealing with

the IoT application is set randomly in [1, 2] Mb. Its CPU and

memory requirement randomly select from the set {2000 MIPS

and 3.75 GB, 500 MIPS and 0.6 GB, 1000 MIPS and 1.7 GB,

2500 MIPS and 0.85 GB}[42]. Its disk requirement is set at 1

GB. The population size and generation number G are set at

100 and 300, respectively. E and I are both assigned to 1, the

elite number e and the maximum mutation m are set at 2 and

0.1, respectively [39], [43]. Moreover, the tunable positive

weights 1 2 3, ,   are all set at 1/3; the threshold value of

communication delay T is set at 2s.

To evaluate the performance and effectiveness of the

OTAA, we compare the OTAA with the following

benchmark approaches.

 Random Allocation (RA): Randomly selects the edge server

to host each virtual machine when there are multiple edge

server candidates that satisfy the constraints.

 First Fit (FF): Selects the edge server that meets the

resource requirements first to host each virtual machine

when there are multiple edge server candidates that satisfy

the constraints.

 Particle Swarm Optimization (PSO): Selects the edge server

to host each virtual machine based on particle swarm

optimization algorithm when there are multiple edge server

candidates that satisfy the constraints [44].

B. Experimental Results and Evaluation

Next, the performance and effectiveness of the OTAA are

first compared with the other related approaches in terms of

unavailability level, resource wastage, and communication

delay while processing a batch of IoT applications. The effect

of experiment parameters including the failure ranges of the

edge server and switch, the number of the base stations, and the

number of IoT applications are analyzed in the rest of this

section.

1) Comparison of Optimization Objectives

The first group experiment is to compare the OTAA with the

other three approaches to evaluate its performance in terms of

unavailability level, resource wastage, and communication

delay while processing a batch of IoT applications. In this

section, the number of IoT applications, base stations, edge

servers and virtual machines were set at 20, 25, 127 and 60,

respectively; the tunable positive weights 1 2 3, ,   were all set at

1/3; the failure ranges of the edge server and switch were set

randomly within 0.02 ~ 0.12 and 0.05 ~ 0.15, respectively; the

threshold value of communication delay T was set at 2s.

As shown in Figs. 4 to 6, the average unavailability level of

FF is the highest of all approaches. This is due to that FF makes

it very easy to allocate the virtual machines processing an IoT

application to the same edge server or base station, and then its

average resource wastage is not the highest. The reason for the

lower average unavailability level of RA is that these edge

servers are randomly selected, and the probability of being in

the same base station is relatively small. Therefore, its average

resource wastage is the highest of all approaches; instead, its

average unavailability level is not too high. Since PSO allocates

each virtual machine to an edge server that provides the least

increase of the joint optimization objective, its average

unavailability level, average resource wastage, average

communication delay are both lower than RA and FF, but it’s

still higher than OTAA. Although PSO is a heuristic approach

with good performance, PSO is more likely to cluster in similar

groups, while the OTAA exploits a new stochastic evolutionary

algorithm (i.e., BBO) to look for global optimization, its

solution does not necessarily have an inherent clustering trend.

Therefore, the average unavailability level for using the OTAA

is 15%, 52% and 10% less than the three approaches,

respectively; the average resource wastage for using the OTAA

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091599, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, 2021 9

is 199%, 8%, and 6% less than the three approaches,

respectively; the average communication delay for using the

OTAA is 44%, 33%, and 13% less than the three approaches,

respectively.

In next section, we further analyze the impact of the failure

ranges of the edge server and switch, the number of the base

stations, and the number of the IoT applications on the

unavailability level, resource wastage, and communication

delay of the FF, OTAA, and PSO (as shown in Figs. 7 to 9).

Please note that since the average communication delay (i.e.,

2.17s) of RA exceeded the threshold value T of communication

delay, RA will not be discussed below.

2) Effect of the Failure Ranges of Edge Server and Switch

Fig. 7 shows the impact of the failure ranges of the edge

server and switch on the unavailability level. To show this

effect more clearly, the number of IoT applications, base

stations, edge servers and virtual machines was set at 20, 25,

127 and 60, respectively; the tunable positive weights 1 2 3, ,  

were all set at 1/3. With the increase of the failure ranges of the

edge server and switch (i.e., from range1 (i.e., [0.02, 0.12] and

[0.05, 0.15]) to range2 (i.e., [0.02, 0.22] and [0.05, 0.25]), the

average unavailability level of each approach tends to increase

overall. That is due to that the quantity of high failure

probabilities for the edge servers and switches in range2 are

more than the range1. Therefore, when some IoT applications is

offloaded to the edge clouds with the higher failure

probabilities for switch and edge server, the average

availability level of the task allocation scheme is not easily

guaranteed. However, although the average unavailability level

of each approach increases as the failure range increases (i.e.,

from range1 to range2), the OTAA is still superior to other

approaches.

3) Effect of the Number of Base Stations

As shown in Fig. 8, these figures display the impact of

number of base stations on the unavailability level, resource

wastage, and communication delay. To show this effect more

clearly, the number of edge servers varied accordingly, i.e., 76,

101, 127, and 152; the number of the virtual machines was set

at 60; the number of the IoT applications was set at 20; the

tunable positive weights 1 2 3, ,   were all set at 1/3; the failure

probabilities of the edge server and switch were randomly

selected from the range1 (i.e., [0.02, 0.12] and [0.05, 0.15]),

respectively; and the number of base stations increased from 15

to 30 according to 5. By analyzing these figures, we can

observe that the average resource wastage fluctuates as the

number of base stations increases, and can be thought of as not

being much affected. This is due to that the virtual machines

need to be reallocated as the number of base stations changes.

Meanwhile, the average unavailability level decreased as the

number of base stations increases, and the average

communication delay hardly changed as the number of base

stations increases. This is due to that there are more edge

servers with a low failure probability as the number of base

stations increases. The average unavailability level, average

resource wastage, and communication delay using the OTAA

are both the lowest of all approaches.

4) Effect of the Number of IoT Applications

As shown in Fig. 9, these figures display the impact of

number of IoT applications on the unavailability level, resource

wastage, and communication delay. To show this effect more

clearly, the number of base stations and edge servers was set at

25 and 127, respectively; the failure probabilities of the edge

server and switch were randomly selected from the range1 (i.e.,

[0.02, 0.12] and [0.05, 0.15]), respectively; the tunable positive

Fig. 4. Comparison of the unavailability level

Fig. 5. Comparison of the resource wastage

Fig. 6. Comparison of the communication delay

Fig. 7. The effect of different failure ranges of the edge server and switch.

Each edge server and each switch can be assigned to a fault range (i.e.,

range1 and range2), respectively; the average unavailability level of all

approaches as the size of the failure range increases.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091599, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, 2021 10

weights 1 2 3, ,   were all set at 1/3; the number of IoT

applications increased from 5 to 20 according to 5; the number

of virtual machines increased from 15 to 60 according to 15. By

analyzing these figures, we can observe that the average

unavailability level, average resource wastage, and average

communication delay increased as the number of IoT

applications increases. The average unavailability level,

average resource wastage, and average communication delay

using the OTAA are both the lowest of all approaches.

VII. CONCLUSIONS AND FUTURE WORK

With the increasing popularity of the mobile edge computing,

Edge clouds have become common platforms for offloading

multiple collaborative tasks of the IoT application. Enhancing

the availability level and resource utilization of the allocation

scheme of these tasks under the condition of certain

communication delay has become a matter of great concern. In

this paper, we proposed and mathematically established three

models: 1) one formulates the unavailability level by

considering the edge severs and switches with heterogeneous

failure probabilities; 2) another formulates the communication

delay while dealing with the IoT applications; 3) the third

formulates the resource wastage. We also proposed a joint

optimization objective to simultaneously minimize the

unavailability level and resource wastage under the condition

of certain communication delay by our proposed approach

based on BBO algorithm. Finally, we carried out the simulation

experiments to demonstrate the performance and effectiveness

of our proposed approach.

In our future work, we will extend the above optimization

problem via offloading the tasks of IoT application to the

remote cloud, and then investigate the influence of the

sequence of task allocation and the dynamic change of these

tasks after allocation on the above optimization objectives.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program

of China (2018YFE0205503), NSFC (61922017, 62032003,

and 61921003), the Key Science and Technology Research

Project of Henan Province (192102310212, 202102210163,

and 202102210152), the Key Science and Technology

Research Project of Anyang City (2021C01GX017), and the

Research and Cultivation Fund Project of Anyang Normal

University (AYNUKPY-2019-24). Shangguang Wang is the

corresponding author.

REFERENCES

[1] J. Ni, K. Zhang, X. Lin, and X. S. Shen, "Securing Fog

Computing for Internet of Things Applications:

Challenges and Solutions," IEEE Communications

Surveys and Tutorials, 2018, 20 (1): 601-628.

[2] Cisco V. Cisco Visual Networking Index: Forecast and

Trends, 2017–2022. White Paper, 2018.

[3] X. Sun and N. Ansari, "EdgeIoT: Mobile Edge Computing

for the Internet of Things," IEEE Communications

Magazine, 2016, 54(12): 22-29.

[4] E. Ahmed, A. Ahmed, I. Yaqoob, J. Shuja, A. Gani, M.

Imran, and M. Shoaib, "Bringing Computation Closer

(a) Impact on the unavailability level (b) Impact on the resource wastage (c) Impact on the communication delay

Fig. 8. The effect of different number of base stations. The number of base stations represents how many base stations can be in the mobile edge computing

environment. Although the average resource wastage fluctuates as the number of base stations increases, it can be thought of as not being much affected; the average

unavailability level decreased as in the number of base stations increases; the average communication delay fluctuates as the number of base stations increases.

(a) Impact on the unavailability level (b) Impact on the resource wastage (c) Impact on the communication delay

Fig. 9. The effect of different number of IoT applications. The number of IoT applications represents how many IoT applications can be offloaded to the edge

clouds. The average unavailability level, average resource wastage, and average communication delay increased as the number of IoT applications increases.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091599, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, 2021 11

toward the User Network: Is Edge Computing the

Solution?" IEEE Communications Magazine,2017, 55(11):

138-144.

[5] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K.

K. Leung, "Dynamic Service Migration in Mobile

Edge-Clouds," IEEE 2015 IFIP Networking Conference

(IFIP Networking 2015), 2015,online publishing.

[6] A. Aral and I. Brandic, "Quality of Service Channelling

for Latency Sensitive Edge Applications," Proceedings of

IEEE International Conference on Edge Computing

(EDGE 2017), 2017, pp. 166-173.

[7] M. Soualhia, C. Fu, and F. Khomh, "Infrastructure fault

detection and prediction in edge cloud environments,"

Proceedings of the 4th ACM/IEEE Symposium on Edge

Computing (SEC 2019), 2019, pp. 222-235.

[8] C. Hong and B. Varghese, "Resource Management in

FogEdge Computing A Survey on Architectures,

Infrastructure, and Algorithms, "ACM Computing

Serveys, 2019, 52(5):97:1-97:37.

[9] T. Tran, A. Hajisami, P. Pandey, and D. Pompili,

"Collaborative Mobile Edge Computing in 5G Networks:

New Paradigms, Scenarios, and Challenges," IEEE

Communications Magazine, 2017, 55(4): 54-61.

[10] J. Shuja, A. Gani,K. Ko,K. So, S. Mustafa, S.Madani, and

M. Khan, "SIMDOM: A framework for SIMD instruction

translation and offloading in heterogeneous mobile

architectures," Transactions on Emerging

Telecommunications Technologies, 2018, 29(4):e3174.

[11] X. Liu, S. Sun, and G. Huang. "Decentralized Services

Computing Paradigm for Blockchain-Based Data

Governance: Programmability, Interoperability, and

Intelligence," IEEE Transactions on Services Computing,

2020, online publishing.

[12] H. Zhu and C. Huang, "Availability-Aware Mobile Edge

Application Placement in 5G Networks," IEEE Global

Communications Conference (Globecom 2017), 2017,

online publishing.

[13] D. Simon, “Biogeography-based optimization," IEEE

Transaction on Evolutionary Computation, 2008, 12(6):

702-713.

[14] J. Yao and N. Ansari, "Fog Resource Provisioning in

Reliability-Aware IoT Networks," IEEE Internet of

Things Journal, 2019, 6(5): 8262-8269.

[15] A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de

Castro, "A Multi-Objective Service Placement and Load

Distribution in Edge Computing," IEEE Global

Communications Conference (Globecom 2019), 2019,

online publishing.

[16] J. Oueis, E. C. Strinati, and S. Barbarossa, "The Fog

Balancing: Load Distribution for Small Cell Cloud

Computing," IEEE Vehicular Technology Conference

(VTCSpring 2015), 2015, online publishing.

[17] L. Zhao and J. Liu, "Optimal Placement of Virtual

Machines for Supporting Multiple Applications in Mobile

Edge Networks," IEEE Transactions on Vehicular

Technology, 2018, 67 (7):6533-6545.

[18] B. Hu, J. Chen, and F. Li, "A dynamic service allocation

algorithm in mobile edge computing," International

Conference on Information and Communication

Technology Convergence (ICTC 2017), 2017, online

publishing.

[19] J. Xie, C. Qian, D. Guo, X. Li, S. Shi, and H. Chen,

"Efficient Data Placement and Retrieval Services in Edge

Computing," IEEE 39th International Conference on

Distributed Computing Systems (ICDCS 2019), pp.

1029-1039, 2019.

[20] S. Pasteris, S. Wang, M. Herbster, and T. He, "Service

placement with provable guarantees in heterogeneous

edge computing systems," IEEE Conference on Computer

Communications (INFOCOM 2019), pp. 514-522, 2019.

[21] V. Farhadi, F. Mehmeti, and T. Porta, "Service Placement

and Request Scheduling for Data-intensive Applications

in Edge Clouds," IEEE Conference on Computer

Communications (INFOCOM 2019), pp. 1279-1287,

2019.

[22] Y. Chen, S. Deng, H. Zhao, Q. He, Y. Li, and H. Gao,

"Data-intensive application deployment at edge: A deep

reinforcement learning approach," IEEE International

Conference on Web Services (ICWS 2019), pp. 355-359,

2019.

[23] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, "Dedas:

Online task dispatching and scheduling with bandwidth

constraint in edge computing," IEEE Conference on

Computer Communications (INFOCOM 2019), pp.

2287-2295, 2019.

[24] Y. Chen, S. Deng, H. Ma, and J. Yin, "Deploying

Data-intensive Applications with Multiple Services

Components on Edge," Mobile Networks and

Applications, 2020, 25(2): 426-441.

[25] A. Khan, M. Othman, A. Khan, J. Shuja, and S. Mustafa,

"Computation Offloading Cost Estimation in Mobile

Cloud Application Models," Wireless Personal

Communications, 2017, 97(3):4897-4920.

[26] X. Guo, R. Singh, T. Zhao, and Z. Niu, "An index based

task assignment policy for achieving optimal power-delay

tradeoff in edge cloud systems," IEEE International

Conference on Communications (ICC 2016), 2016, online

publishing.

[27] A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de

Castro, "Optimized Placement of Scalable IoT Services in

Edge Computing," IFIP/IEEE Symposium on Integrated

Network and Service Management (IM 2019), pp.

189-197, 2019.

[28] M. Goudarzi, H. Wu, M. S. Palaniswami, and R. Buyya,

"An Application Placement Technique for Concurrent IoT

Applications in Edge and Fog Computing Environments,"

IEEE Transactions on Mobile Computing, 2020, 20 (4):

1298-1311.

[29] K. Peng, H. Huang, S. Wan, and V. Leung,

"End-edge-cloud collaborative computation offloading for

multiple mobile users in heterogeneous edge-server

environment," Wireless Network, 2020, online publishing.

[30] S. Cheng, Z. Chen, J. Li, and H. Gao, "Task Assignment

Algorithms in Data Shared Mobile Edge Computing

Systems," IEEE 39th International Conference on

Distributed Computing Systems (ICDCS 2019), pp.

997-1006, 2019.

[31] J. Oueis, E. Calvanese-Strinati, A. De Domenico, and S.

Barbarossa, "On the impact of backhaul network on

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091599, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, 2021 12

distributed cloud computing," IEEE Wireless

Communications and Networking Conference Workshops

(WCNCW 2014), pp. 12-17, 2014.

[32] G. Huang, C. Luo, K. Wu, Y. Ma, Y. Zhang, and X. Liu .

"Software-Defined Infrastructure for Decentralized Data

Lifecycle Governance: Principled Design and Open

Challenges," Proceeding ofIEEE 39th International

Conference on Distributed Computing Systems (ICDCS

2019), 2019, online publishing.

[33] P. Gill, N. Jain, and N. Nagappan, "Understanding

network failures in data centers: measurement, analysis,

and implications," Proceeding of ACM Conference on

Special Interest Group on Data Communication

(SIGCOMM 2011), pp. 350-361, 2011.

[34] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, "A

multi-objective ant colony system algorithm for virtual

machine placement in cloud computing," Journal of

Computer and System Sciences, 2013, 79(8): 1230-1242.

[35] J. Xu and J. A. Fortes, "Multi-objective virtual machine

placement in virtualized data center environments,"

Proceeding of IEEE/ACM International Conference on

Green Computing and Communications (GreenCom

2010), pp. 179-188, 2010.

[36] S. Srikantaiah, A. Kansal, and F. Zhao, "Energy aware

consolidation for cloud computing," Cluster Computing,

2008, 12(1):10-10.

[37] H. Ma, D. Simon, P. Siarry, Z. Yang, and M. Fei,

"Biogeography-Based Optimization: A 10-Year Review,"

IEEE Transactions on Emerging Topics in Computational

Intelligence, 2017, 1(5): 391-407.

[38] J. Liu, S. Wang, A. Zhou, R. Buyya, and F. Yang,

"Availability-aware Virtual Cluster Allocation in

Bandwidth-constrained Datacenters," IEEE Transactions

on Services Computing, 2020, 13(3): 425-436.

[39] H. Ma, S. Ni, and M. Sun, "Equilibrium species counts and

migration model tradeoffs for biogeography-based

optimization, Proceeding of IEEE 48th International

Conference on Decision and Control (CDC 2009), pp.

3306-3310, 2009.

[40] J. Liu, S. Wang, A. Zhou, S. Kumar, F. Yang, and R.

Buyya, "Using Proactive Fault-tolerance Approach to

Enhance Cloud Service Reliability," IEEE Transactions

on Cloud Computing, 2018, 6(4):1191-1202.

[41] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya,

“ifogsim: A toolkit for modeling and simulation of

resource management techniques in the internet of things,

edge and fog computing environments,” Software:

Practice and Experience, 2017, 47(9): 1275–1296.

[42] A. Beloglazov and R. Buyya, "Optimal online

deterministic algorithms and adaptive heuristics for

energy and performance efficient dynamic consolidation

of virtual machines in cloud data centers," Concurrency

and Computation: Practice and Experience, 2012, 24(13):

1397-1420.

[43] D. Simon, M. Ergezer, and D. Du, "Population

distributions in biogeography-based optimization

algorithms with elitism," Proceeding of IEEE

International Conference on Systems, Man and

Cybernetics (SMC 2009), pp. 991-996, 2009.

[44] S. Wang, Z. Liu, Z. Zheng, Q. Sun, and F. Yang, "Particle

swarm optimization for energy-aware virtual machine

placement optimization in virtualized data centers,"

Proceeding of IEEE International Conference on Parallel

and Distributed Systems (ICPADS 2013), pp. 102-109,

2013.

Jialei Liu is an assistant professor at

School of Software Engineering, Anyang

Normal University, China. He received

the PhD degree in computer science and

technology from Beijing University of

Posts and Telecommunications (BUPT)

in 2018. He received his ME in computer

science and technology from Henan

Polytechnic University. His major research interests include

cloud computing and mobile edge computing.

Chunhong Liu is an associate professor in
Department of Computer and Information
Engineering at Henan Normal University,
China. She received the PhD degree in
computer science and technology from
Beijing University of Posts and
Telecommunications (BUPT) in 2018. She
received her ME in computer science and
technology from Xidian University. Her
major research interests include cloud

computing, edge computing, machine learning and
oriented-service computing.

Bo Wang is a lecturer at School of
Software Engineering, Anyang Normal
University, China. He received the PhD
degree in computer science and technology
at Beijing Institute of Technology (BIT) in
2019. He received his ME degree in
computer software and theory from
Zhengzhou University. His major research
interests include big data processing
technology, cloud computing, computer
system architecture and data mining.

Guowei Gao is an associate professor at
School of Software Engineering, Anyang
Normal University, Anyang, China. He
received the PhD degree in information and
communication engineering with Hohai
University in 2018. He received the B.S.
degree in computational science and the
M.S. degree in applied mathematics from
Henan University in 2005 and 2008,
respectively. His major research interests
include signal processing, edge computing,

data mining and machine learning.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091599, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, 2021 13

Shangguang Wang received his Ph.D.
degree at Beijing University of Posts and
Telecommunications in 2011. He is
currently a professor and deputy director at
the State Key Laboratory of Networking
and Switching Technology, BUPT. He has
published more than 100 papers, and played
a key role at many international
conferences, such as general chair and PC
chair. His research interests include edge
computing, service computing, and cloud

computing. He is a senior member of the IEEE, and the
Editor-in-Chief of the International Journal of Web Science.

