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Abstract——Composing several API-defined services into one composite service per user requirements has become an 

important service creation approach in the cloud-enabled API economy. Various service selection approaches in support of service 

composition on demand have been proposed. They usually assume that networking resources are over-provisioned and their 

usage needs not be considered when making quality-aware service composition decisions. In practice, these approaches often 

lead to wasteful network resource consumption and impractical end-to-end QoS optimality for cloud-based services. This paper 

proposes a network-aware cloud service composition approach, named NetMIP, with comparative experimental evaluations for 

the clouds that adopt the widely deployed fat-tree network topology. By formalizing the service composition goal as a multi-

objective constraint optimization problem, we have validated the proposed approach can be used to effectively reduce network 

resource consumption and deliver QoS optimality while satisfying the end-to-end QoS constraints for the candidate composite 

services in the cloud. The comparative experimental evaluations are done via a credible cloud infrastructure simulation system, 

named WebCloudSim. Extensive evaluation results show that NetMIP outperforms several representative cloud service 

composition approaches in terms of network resource consumption, QoS optimality, and computation time under various service 

selection workloads and fat-tree network topology settings. 

Index Terms—cloud computing; service composition; fat-tree cloud data center network; network resource consumption; QoS 
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1 INTRODUCTION 

apid innovation of infrastructure-as-a-service clouds 
has enabled the delivery of many consumer and en-

terprise application capabilities through the Internet as 
API-defined services with no need to expose service im-
plementation details. In-house and commercial cloud ser-
vice provider (CSP) marketplaces (hosted by Alibaba, Am-
azon, IBM, etc.) have formed a solid foundation for a 
cloud-based API economy in which computing and data 
resources can be managed and exploited cost-efficiently 
by dynamically composing the service APIs in production 
[1]. For instance, an on-line shoes shopping service can be 
composed via a preference-learning service, a search ser-
vice, a payment service, and a shipping service.  

Service composition is a well-established research field 
[2] and many relevant techniques have been proposed in 
support of various service composition constraints [3]. In 
terms of the service-oriented architecture (SOA) triangle 
[4], service providers publish their services in a service reg-
istry and a service discovery component returns a set of 
concrete services that have the requested functional (e.g., 
search) and non-functional (e.g., QoS) properties. After 
selecting a specific qualified concrete service, the service 
requestor can consume the service’s capabilities per its 
API invocation rules. A service requestor can be a service 
broker that serves its users or clients via several classes of 

concrete services. It is important for a service broker (e.g., 
a CSP) to be able to make optimal service composition de-
cisions and do that in a scalable manner when the de-
mand for provisioning composite services is high and the 
number of concrete services is large. 

Most existing service composition schemes for cloud 
services [5-10] merely reuse traditional web service com-
position technology [11-15], which considers maximum 
aggregated QoS values (e.g., throughput and delay) of 
concrete services with impractical end-to-end QoS opti-
mality. Moreover, they are ignorant of the excessive net-
work resource consumption issues that could be caused 
by poor decisions on where the chosen concrete services 
run on the cloud datacenter networks. These two motivat-
ing problems of this paper are elaborated below. 

1) Consider Network Resource Consumption. Most of 
today’s cloud datacenter networks adopt a multi-rooted 
tree topology structure called the fat-tree approach [16], 
which delivers large bisection bandwidth through rich 
path multiplicity [17] as shown in Fig. 1. In the fat-tree to-
pology structure, all servers that are physically connected 
to the same edge switch form their own subnet. All physi-
cal servers that share the same aggregation switches are 
in the same pod. One physical server can host several VMs, 
and one VM can host several services. The top layer is the 
core tier, and the switches in this layer are core switches. 
A link connecting a core switch and an aggregation switch 
is a core link. Because all cross-datacenter traffic must be 
routed through the core switches, utilization of the core 
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links must be properly managed from the viewpoint of 
cloud service quality assurance (e.g., unnecessary con-
sumption of the core links should be minimized whenever 
possible). Then, as due to increases in data-intensive ser-
vices/applications in the cloud data center, cloud data 
center traffic is experiencing rapid growth1. Therefore, in 
cloud data centers shared by many data-intensive services, 
the upper-level network resource (i.e., bandwidth re-
sources), especially the network resources of core layer, of 
the cloud data center network may become a bottleneck 
[18]. Moreover, we note that most existing cloud service 
composition approaches select and compose services 
based upon recorded QoS properties of candidate ser-
vices without taking into account the consumption of nec-
essary physical servers, subnets, and/or pods. They would 
not only result in excessive network resource consump-
tion (particularly for the core links), but also impede on-
demand scaling for provisioning quality-assured compo-
site-services.  

 

Fig. 1. Fat-tree topology structure. The switches at the top (black), 
middle (blue), and bottom (red) layers are core, aggregation, and edge 
switches, respectively. S presents services running on one VM. In this 
paper, all services are from the same CPS in the same cloud data 
center. 

2) No End-to-End QoS Optimality. In the conventional 
service composition scheme, the end-to-end QoS opti-
mality (hereafter referred to as QoS optimality) of a ser-
vice composition depends on the aggregated QoS of the 
individual services [19]. The QoS of an individual service 
can be obtained by calculating the QoS history of a service 
that is invoked by other services or consumers. However, 
the QoS aggregation rules focus only on the QoS of indi-
vidual services and do not consider the QoS of the net-
working infrastructure (e.g., network latency, network 
throughput, etc.) between multiple concrete services dur-
ing service composition. With reference to Fig. 1, there 
could be one composite service composed of two VM-
based concrete services running on hosts A and D, respec-
tively. As per conventional service composition schemes, 
the service selection decision would be optimal in terms 
of the QoS constraints used for selecting them from the 
 

1  http://www.cisco.com/c/en/us/solutions/collateral/service-pro-
vider/global-cloud-index-gci/Cloud_Index_White_Paper.pdf 

qualified candidate services. However, QoS experience 
with the composite service could gravely fall short of the 
promise due to, e.g., congested core links between the 
two services. In practice, unrealistic QoS optimality would 
cause unexpected service composition failures and result 
in service-level agreement (SLA) [20] violations and reve-
nue loss for CSPs.  

 Aiming at resolving the aforementioned problems for 
CSPs, we propose a network-aware service composition 
approach that optimizes service composition decisions by 
taking into account, among other decision-making factors, 
network resource consumption in fat-tree cloud datacen-
ter networks and realistic (end-to-end) QoS optimality. To 
the best of our knowledge, the proposed approach is the 
first research effort of its kind with the novel contributions 
listed below: 

1) In contrast to past research efforts in service com-
position, our work integrates composite service 
model and datacenter network topology, consid-
ers impact on network resource consumption ac-
cording to service deployment locations, and as-
sures realistic QoS optimality by factoring in net-
work QoS properties in the proposed service com-
position process.  

2) We present a network-aware service composition 
approach that contains a function for designing 
network resource consumption, computing the 
QoS of networks, proposing a network-aware ser-
vice composition model, and finding the optimal 
solution with minimal network resource con-
sumption and realistic QoS optimality.  

3) We have quantitatively validated our approach is 
superior to several representative cloud service 
composition approaches (via the cloud simulation 
system WebCloudSim) in terms of network re-
source consumption, QoS optimality, and compu-
tation time under various service selection work-
loads and fat-tree network topology settings. 

The remainder of this paper is organized as follows. 
Section 2 introduces related work. Section 3 presents our 
network-aware service composition approach, Section 4 
illustrates comparative experimental evaluation results. 
We conclude the paper in Section 5 with an outlook on 
our future work. 

2. RELATED WORK 

A number of schemes have been proposed for service 
composition in the cloud [3], which consists of horizontal 
service composition (dealing mainly with web/software 
services composed together according to a workflow or 
business process [8]) and vertical service composition 



S. WANG ET AL.:  TOWARDS NETWORK-AWARE SERVICE COMPOSITION IN THE CLOUD 3 

 

(which takes the whole hardware, middleware, and soft-
ware stack of a service into account). We note that both 
types of service composition derive from conventional 
QoS-aware web service composition [14,15]. 

Regarding horizontal service composition in the cloud, 
Gutierrez-Garcia and Sim [21,22] proposed an agent-
based approach to composing different types of cloud ser-
vices for multi-cloud environments. Each cloud participant 
(e.g., consumers, brokers, and service providers) and web 
service is represented by an agent, and agent-based coop-
erative problem-solving technique is used to dynamically 
select the most appropriate services (e.g., the cheapest 
services) to create a composite service. Like conventional 
QoS-aware web service composition approaches (e.g., 
[23-28], [29]), this approach [21,22] does not consider the 
impact of overloaded cloud infrastructure resources (e.g., 
VMs, physical servers, data center networks, etc.). In con-
trast, Dastjerdi and Buyya [9] considered virtual appli-
ances (software images) and virtual machines as cloud 
services, and achieved the best combination of compati-
ble virtual appliances and virtual machines that minimizes 
deployment cost and deployment time while maximizing 
reliability and adhering to compatibility constraints. Alt-
hough this approach employs a multi-objective algorithm 
and fuzzy logic to enable users to conveniently express 
their (concrete) service selection preferences, it involves 
VM settings that are idealistic and impractical for cloud in-
frastructure resources (e.g., it does not associate the ser-
vices with physical servers or fat-tree datacenter net-
works). Similarly, Kritikos and Plexousakis [10] presented 
a cloud service composition approach for multi-cloud ap-
plications such that an optimal service composition solu-
tion could be found to satisfy all end-user requirements 
with all possible design choices considered. Although this 
approach considers VM characteristics and cost in a more 
elaborate manner (e.g., number of cores, main memory 
size, and storage size) than [9], this work and similar work 
[30-32] are still considered impractical due to their igno-
rance of VMs and service locations in cloud datacenter 
networks [33]. 

Regarding vertical service composition in the cloud, 
Mietzner et al. [3] proposed a framework of vertical com-
ponent composition based upon an enterprise service bus 
infrastructure to facilitate reusing the service components 
of a distributed application at layers of Software-as-a-Ser-
vice (SaaS), Platform-as-a-Service (PaaS), and Infrastruc-
ture-as-a-Service (IaaS). Based on the framework, Karim 
[8] proposed a model for predicting end-to-end QoS val-
ues of cloud-based software solutions composed via SaaS 
and IaaS services. Although it exploits VM configuration 
settings, it does not consider service location and cloud 
datacenter network topology, which are key to the QoS 
assurance of composite cloud services. Jun et al. [34] pro-

posed a model for converged network-cloud service pro-
visioning, formulated the problem of QoS-aware network-
cloud service composition as a type of multi-constraint 
optimal path, and developed an heuristics to solve the for-
mulated problem. Compared with aforementioned ap-
proaches, this work aimed at delivering optimal end-to-
end QoS across both networking and computing domains 
and attempted to obtain realistic QoS optimality for the 
cloud-hosted composite services. However, this work and 
other work [35] still could not achieve realistic QoS opti-
mality owing to their insufficient exploitation of the de-
ployment dependence between VMs and datacenter net-
works.  

Compared with existing cloud service composition ap-
proaches, which exhibit excessive network resource con-
sumption and impractical QoS optimality, our approach, 
by exploiting service locations in fat-tree cloud datacenter 
networks, strives to make the best service composition 
decisions while also satisfying minimal network resource 
consumption and realistic QoS optimality in the cloud.  

3. NETWORK-AWARE SERVICE COMPOSITION 

To facilitate presenting the proposed approach, we first 
define, in Section 3.1, some other terms and notations 
that will be used for the rest of the paper. We describe the 
network source consumption function used by our service 
composition algorithm in Section 3.2. In Section 3.3, we 
establish a QoS utility function, including a QoS utility 
function for services and a QoS utility function for net-
works. Via the network resource consumption function 
and the QoS utility function, we formalize the problem of 
network-aware cloud service composition and formulate 
the optimal solution as a minimum in a multi-objective 
optimization problem in Section 3.4. Finally, in Section 3.5, 
we describe the 0-1 mixed integer program we use for 
finding the optimal cloud service composition solution 
with minimal network resource consumption and realistic 
QoS optimality.  

3.1 Preliminaries 

In this paper, the target cloud environment exploits a fat-
tree cloud datacenter, as shown in Fig. 1. It consists of 
three-level trees of switches and a set of physical servers 
that have different resource capacities.  

The top layer is composed of c core switches which pro-
vide connections between aggregation switches; c de-
notes the number of core switches. The middle layer is 
composed of a aggregation switches which provide con-
nections between edge switches; a denotes the number 
of aggregation switches. The bottom layer is composed of 
e edge switches which provide connections for physical 
servers; e denotes the number of edge switches. Without 
losing the generality of our approach, we assume every 
edge switch can be connected by p physical servers; i.e., 
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the datacenter network can provide connections for up to 
� = �� physical servers. 

TABLE I.  NOTATIONS 

Symbol Meaning 

c  Number of core witches 

a  Number of aggregation switches 

e  Number of edge switches  

p  Number of physical servers that link to one 
edge switch 

�  Total number of all physical servers in a fat-
tree data center network 

��� A set of physical servers that links to the ith 
edge switch 

ivm   A set of VMs in the ith physical server 

V Number of VMs that run on a physical 
server 

is   A set of services in the ith VM 

S   The service composition in the cloud 

is   The ith service class 

M Number of service classes 

N Number of candidate services in a service 
class 

corePacket  Total size of packets transferred by core 
switches 

aggPacket  Total size of packets transferred by edge 
switches 

edgePacket  Total size of packets transferred by edge 
switches 

NRS S（ ） Total network resource consumption of ser-
vice composition in the cloud 

( )kq s  The kth attribute value in service s   

( )kq S  Aggregated service QoS values by the kth at-
tribute values from service composition in 
the cloud 

r  Number of services/network QoS attrib-
utes 

( )U S  QoS utility function of a service according 
to all attributes from service composition in 
the cloud 

( )UN S  QoS utility function of a network according 
to all attributes from service composition in 
the cloud 

C  A given set of global QoS constraints 

1) Physical server. Let ��� = {����, ����, … , ����} de-

note a set of physical servers that links to the ith 
edge switch. Each physical server can run multiple 
VMs, and is characterized by the CPU perfor-
mance (specified by the number of MIPS), the 
amount of memory used, network bandwidth, 
and disk storage. 

2) Virtual Machine. Let 1 2{ , ,..., }i i i ivvm vm vms vm de-

note a set of VMs in the ith physical server, where 

v denotes the number of VMs in the physical 
server. We assume each physical server hosts v 
VMs. One VM can run multiple services, and each 
service runs on only one VM as a time-varying 
workload.  

3) Service. Let 1 2{ , ,..., }i i i ils s s s denote a set of ser-

vices in the ith VM, where � denotes the number of 
services in the VM. We assume each VM runs � 
services while satisfying its resource allocation 
constraints (e.g., CPU, memory, and bandwidth).   

4) Service composition, service class, candidate ser-

vice, and concrete service. Let 1 2{ , , ... , }mS s s s  

denote a service composition in the cloud that sat-
isfies a specific set of user requirements. It com-
prises of a set of services, each of which is selected 
from a service class. A service class 

 1 2= , ,..., ,1 )(i i ii ins s s s s S i n    contains a set of 

candidate services, where n  is the number of can-
didate services. All of the candidate services in a 
service class provide the same capabilities, though 
different candidate services may have different 
QoS attributes. Every service composition solution 
can choose only one candidate service from a 
qualified service class and make that a concrete 
service for the solution.  

TABLE I lists all of the aforementioned notations. In this 
paper, we consider the sequential composition model 
only since other models (e.g., parallel, conditional, and 
loop models) can be transformed into the sequential 
model using the techniques in [36,37].  

3.2 Network Resource Consumption 

Definition 1 (Network resource consumption). Network 
resource consumption (NRS) is the total size of packets 
transferred by all switches in a fat-tree cloud data center 
network over a period time, which can be calculated as 
follows [38]: 

core agg edgeNRS Packet Packet Packet                (1) 

where corePacket  denotes the total size of packets trans-

ferred by core switches, which can be calculated as follows: 

,
( )

core i j
i

i

Packet x size packet              (2) 

where , {0,1}i jx  , and , 1i jx   indicates that the jth link is 

selected to transfer the ith packets via the core switches; 
otherwise , 0i jx  . 

agg
Packet denotes the total size of packets transferred 

by the aggregation switches, which can be calculated as 
follows: 

, ( )
agg

ii j
i

Packet y size packet               (3)  

where , {0,1}i jy  , and , 1i jy   indicates that the jth link is 
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selected to transfer the ith packets via the aggregation 
switches; otherwise , 0i jy  . 

edge
Packet  denotes the total size of packets transferred 

by the edge switches, which can be calculated as follows: 

, ( )
edge

ii j
i

Packet z size packet             (4) 

where , {0,1}i jz  , and , 1i jz   indicates that the jth link is 

selected to transfer the ith packets via the aggregation 
switches; otherwise , 0i jz  . 

In order to calculate network resource consumption 
for service composition in the cloud, we use NRS S（ ） to 
denote the network resource consumption of service 
composition S  as follows: 

( )
i

core agg edge
s S

NRS S Packet Packet Packet


  （ ）    (6) 

where we denote the total size of packets transferred by 
all switches for the service candidate of service class 

1 )(is i n   as the network resource consumption of ser-

vice composition S  in the cloud.  

 3.3 QoS Utility Function 

3.3.1 QoS utility function of service 

Consider a QoS requirement for service s   with r attrib-

utes and attribute vector 1 2{ ( ), ( ),..., ( )}rqs q s q s q s , where 

the value of ( )kq s (1 )k r   represents the kth attribute 

value in service s  . Similarly, ( )kq S   is aggregated by the 

kth attribute values from service composition S  according 
to the QoS aggregation functions (more detailed descrip-
tion of the functions can be found in [7,14,15]).  

In order to shield different units or scopes of QoS at-
tributes, we adopt a QoS utility function [15] to map the 
vector of QoS values qs  into the domain [0, 1] for uniform 

computation of multi-dimensional QoS attributes in a VM 
dependent manner, as shown in Definition 2. 

Definition 2 (QoS utility function of service): The QoS 

utility functions for one service (1 )is s i m     and ser-

vice composition S  are defined as follows [7,13-15]: 

j,

1 j, j,

( )
( )= .

maxr
k k

kmax min
k k k

Q q s
U s

Q Q







 ，                                        (7) 

   1

( )
( )= .

maxr
k k

kmax min
k k k

Q q S
U S

Q Q







 ，

                                        
(8) 

with   

, ,
1

min min min
j, j,

1

= = ( )

= , = min ( )

ji j

ji j

m
max max max
k j k j k k ji

s s s
j

m

k k k k ji
s s s

j

Q Q Q max q s

Q Q Q q s

  


  













,

，                        (9) 

where 
1

( 1)
r

k k
k

w R w



   represents the weight of each 

QoS attribute, j,
max

kQ   is the maximum value of the kth at-

tribute in all candidate services in the ith service class is , 

,
min
j kQ   is its minimum value, max

kQ   and min
kQ   are the maxi-

mum and minimum values of the kth attribute, respec-
tively, and s  denotes a set of services that run on VMs. 

3.3.2 QoS utility function of network 

As part of our design of the QoS aggregation function for 
sequential service compositions, our calculating the QoS 
utility values of a fat-tree cloud datacenter network is 
done by considering mainly three quality criteria of a net-
work: network delay, network throughput, and network 
reliability . 

 Network delay. In this paper, the network delay 
is the sum of processing time for all switches for 
service composition: 

( )= core agg edgend S nd nd nd                      (10) 

 where ( )nd S  represents the network delay of the 

service composition and / /core agg edgend nd nd  de-

note the total processing time of a concrete ser-
vice (of service class 1 )(is i n   ) transferred by 

the core/aggregation/edge switches, respectively. 
They can be calculated as follows: 

1,

( )
c re

i

o

s S

c

j
j

nd time core
 

              (11) 

1,

( )
i

agg

s

a

j
Sj

nd time agg


              (12) 

1,

( )
e ge

i

d

s S

e

j
j

nd time edge
 

              (13) 

where ( )jtime core denotes the processing time of 

the jth core switch, which is an average observa-
tion of past processing times of all core switches; 

( )jtime agg denotes the processing time of the jth 

aggregation switch, which is an average observa-
tion of past processing times for all aggregation 
switches; ( )jtime edge  denotes the processing 

time of the jth edge switch, which is an average 
observation of past processing times of all edge 
switches; c  denotes the number of core switches; 
a  denotes the number of aggregation switches; 
and e  denotes the number of edge switches. 

 Network throughput. Network throughput refers 
to the minimal average data rate of successful 
data delivery over a fat-tree cloud datacenter net-
work for service composition, which is measured 
in bits per second (bps) as follows: 
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( )=min{ , , }core agg edgent S nt nt nt                     (14) 

where ( )nt S   represents the network throughput 

of service composition S  , and / /core agg edgent nt nt

denote the minimal throughput of the core/ag-
gregation/edge switches that processed a con-

crete service of service class 1 )(is i n   , which 

can be calculated as follows: 

1

min { ( )}
cor

i
e

c

j
js S

ns thou core


             (15) 

1

min { ( }
agg

is S

a

j
j

ns thou agg


 ）             (16) 

1

min { ( )}
edg

i
e

e

j
js S

ns thou edge


             (17) 

where ( )jthou core denotes the throughput of the 

jth core switch, which is an average observation of 
past throughputs of all core switches; ( )jthou agg

denotes the throughput of the jth aggregation 
switch, which is an average observation of past 
throughputs of all aggregation switches; 

( )jthou edge  denotes the throughput of the jth 

edge switch, which is an average observation of 
past throughput of all edge switches; c  denotes 
the number of core switches; a   denotes the 
number of aggregation switches; and e  denotes 
the number of edge switches. 

 Network reliability. Network reliability is the 
product of the probabilities that a service request 
is correctly responded to within the maximum ex-
pected time frame (which is published in the 
switch description) for all witches. The value of 
network reliability is computed from historical 
data about past invocations using the following 
formula:  

( ) core agg edgenr S nr nr nr                       (18) 

where ( )nr S  represents the network reliability of 

service composition S , and / /core agg edgenr nr nr de-

note the network reliability of a concrete service 

(of service class 1 )(is i n   ) transferred by the 

core/aggregation/edge switches, which can be 
calculated as follows: 

1,

( )
c re

i

o

s S

c

j
j

nr reli core
 

              (19) 

1,

( )
i

agg

s

a

j
Sj

nr reli agg


              (20) 

1,

( )
e ge

i

d

s S

e

j
j

nr reli edge
 

              (21) 

where ( )jreli core denotes the network reliability 

of the jth core switch, which is an average obser-
vation of past reliability for all core switches; 

( )jreli agg denotes the network reliability of the 

jth aggregation switch, which is an average obser-
vation of past reliability of all aggregation 
switches; ( )jreli edge  denotes the network relia-

bility of the jth edge switch, which is an average 
observation of past reliability for all edge 
switches; c  denotes the number of core switches; 
a  denotes the number of aggregation switches; 
and e  denotes the number of edge switches. 

Definition 3 (QoS utility function of network). The QoS 
utility function of a network for service composition is the 
QoS aggregation of all switches in a fat-tree cloud data-
center. Suppose that there are r  QoS attributes of a net-
work. The QoS utility function of a network for service 
composition S  is defined as follows: 

   1

( )
( )= .

maxr
k k

kmax min
k k k

QN qn S
UN S

QN QN







 ，

               
(22) 

 with   

min

= max ( )

= min ( )

max
k k i

i

k k i
i

QN qn S

QN qn S





，                         (23) 

where 
1

( 1)
r

k k
k

w R w



   represents the weight of each 

QoS attribute of a network, ( )kqn S  denotes the kth QoS 

attributes of a network (in this paper, 

( )={ ( ), ( ), ( )}qn S nd S nt S nr S , and =3r ); max
kQN  is the max-

imum value of the kth attribute of service composition, 

and min
kQN  is the minimum value. 

3.4 Problem Statement 

The problem of finding the best service composition from 
all possible combinations is essentially an optimization 
problem in which the overall QoS utility value must be 
maximized and network resource consumption is a mini-
mum while also satisfying global QoS constraints (which 
represent the user’s end-to-end QoS requirements and 
can be expressed in terms of upper and/or lower bounds 
for the aggregated QoS values of a service composition) 
[36,39-41]. Via the terms and notations defined in Section 
3.1, the optimization problem we address can be formal-
ized as follows: 

In a fat-tree cloud datacenter network environment, for 

a given service composition request 1 2{ , , ... , }mS s s s  

and a given set of r global QoS constraints 

1 2{ , , ... , }rC c c c  , find a service composition solution 

for the cloud by binding each service class to a concrete 
service such that: 

 The overall network resource consumption 
( )NRS S  is minimized, 

 The overall QoS utility ( ) ( )U S UN S  is maximized, 

and 
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 The aggregated QoS values of a composite service 

satisfy:     k kq S +qn S or c , c C, 1 k r       

(Note: In this paper, we choose     kq S +qn S c ). 

3.5 Finding the Optimal Solution 

In this paper, the objective of cloud service composition is 
to reduce network resource consumption and deliver re-
alistic QoS optimality while also satisfying global QoS con-
straints. Thus, network-aware service composition in the 
cloud can be formulated as a multi-objective constraint 
optimization problem, i.e., a maximization problem for 
overall QoS utility with a minimization problem for overall 
network resource consumption given by 

  , ,
1

,
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subject to global QoS constraints as 
( ) ( )k k kq S qn S c  , kc C  ,                             (26) 

where n   is the number of candidate services, m  is the 
number of service classes,

, , ,/ /core i agg i edge iPacket Packet Packet  denote the total sizes 

of packets transferred by all switches for the concrete ser-

vice from the ith service class, 
1

( 1)
r

k k
k

w R w



   repre-

sents the weight of each QoS attribute, r   denotes the 

number of QoS attributes, max
kQ   and min

kQ   are the maxi-

mum and minimum values of the kth service QoS attribute, 
( )kq S  denotes the aggregated service QoS value of the kth 

service QoS attribute, max
kQN   and min

kQN  are the maxi-

mum and minimum values of the kth network QoS attrib-
ute in the service composition, ( )kqN S  denotes the ag-

gregated network QoS value of the kth service QoS attrib-
ute, C  denotes a given set of global QoS constraints, and 

kc   denotes the value of global QoS constraints, respec-

tively. 
For the problem, we aim at achieving two objectives 

simultaneously: minimizing the network resource con-
sumption and maximizing the QoS utility value. This 
makes it feasible to find an optimal composition, as the 
number of candidate services and service classes is very 
small in the cloud. Hence, we adopt the mixed integer pro-
gramming (MIP) method to solve the optimization prob-
lem of cloud service composition. The MIP method has 
been used to solve service composition problems by other 
researchers [13,40]. By solving (24-27) using any MIP 
solver method, a list of the best service candidates is ob-
tained and returned to the service composition engine (or 
 

2 www.webcloudsim.org 

service broker) in the cloud. 

4 PERFORMANCE EVALUATION 

We implemented our approach in the credible cloud sim-
ulation system WebCloudSim [17,41], and comparatively 
evaluated our approach against several representative 
cloud service composition approaches in terms of net-
work resource consumption, QoS optimality, and compu-
tation time under various service selection workloads and 
fat-tree network topology settings. Extensive experi-
mental evaluation results show that our proposed ap-
proach, named NetMIP, is the best one in terms of effec-
tiveness and efficiency. 

4.1 WebCloudSim System 

In order to evaluate our approach, we developed the 
WebCloudSim system and constructed a fat-tree cloud 
data center network environment, including core switches, 
aggregation switches, edge switches, network topology, 
physical servers, virtual machines, and services.  

As shown in Fig. 2, when users input service composi-
tion requirements with global QoS constraints into the 
WebCloudSim system, the web server assigns them to the 
service composition server in use. The service composi-
tion server then adopts the service composition approach 
under evaluation to find the best services from the ser-
vice/application servers. Conventional service composi-
tion approaches often select the best services in terms of 
their respective QoS properties. In contrast, our NetMIP 
approach searches for the best services and compose 
them into a composite service based upon not only their 
respective QoS properties, but also network resource con-
sumption and network QoS measured and provided by 
the WebCloudSim server. Thus, compared with other ap-
proaches, our service composition process not only as-
sures higher realistic QoS, but also effectively reduces net-
work resource consumption in the cloud. More details on 
the WebCloudSim open source tool2  are available from 
our previous work [38,42].  

 

Fig. 2. Overview of the WebCloudSim system. 
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4.2 Experimental Evaluation Setup 

In the WebCloudSim system, we established a 16-port fat-
tree cloud datacenter consisting of 64 core switches and 
16 pods. For the experimental evaluation setup, each pod 
comprised of 8 aggregation switches and 8 edge switches 
in a fat-tree cloud data center. That is, there were 128 ag-
gregation switches and 128 edge switches. The bandwidth 
of the core and aggregation switches was set as 10 Gps 
and the bandwidth of the edge switch was set as 1 Gps. 
Each edge switch could connect to 8 physical servers. In 
the cloud datacenter, these physical servers were divided 
into two categories: 1) HP ProLiant G4 with one 3720 MIPS 
CPU and 4 GB memory, and 2) HP ProLiant G5 with one 
5320 MIPS CPU and 4 GB memory.  

Each physical server could host 4 VMs, and each VM 
could host 2 services. Therefore, the datacenter contained 
1024 host servers, 4096 VMs, and 8192 services. The base 
system configuration for the VM was 769 MB with 5.3 MB 
RAM disk, 1.6 MB kernel, 512 MB memory, and 1 GB disk. 
There were 8192 services in the cloud datacenter and 
each service had three QoS attributes: delay, throughput, 
and reliability. Since the target system was a fat-tree cloud 
datacenter network environment, it was extremely diffi-
cult to conduct repeatable, large-scale experiments on a 
real service and network infrastructure for the needed 
comparative evaluations. Hence, we used a collection of 
real QoS datasets [43-46] as the QoS data for all 8192 ser-
vices to ensure the repeatability of experiments. The 
WebCloudSim system was configured to create 1,000 ser-
vice composition requirements that were randomly exe-
cuted while running the experiments. 

4.3 Approaches 

We compared the performance of NetMIP with five other 
approaches in terms of network resource consumption, 
QoS optimality, and computation time: PSO, NetPSO, GA, 
NetGA, and MIP. 

 PSO. Particle swarm optimization (PSO) is often 
used to determine the optimal service composi-
tion in web or cloud environments [47,48], which 
optimizes a problem by moving particles around 
in the search space according to simple mathe-
matical formulae involving the particles’ positions 
and velocities. The initial population of particles 
was set to 20, and the maximum number of iter-
ations was set to 30. We supplied this PSO with 
the standard QoS utility function, which does not 
model network QoS or network resource con-
sumption. This is currently a standard approach 
to solving the service composition problem. 

 NetPSO. It is a network-aware extension of PSO. 
Besides the same settings used for PSO, it is ex-
tended with our network QoS utility function and 
network resource consumption model, allowing it 

to determine realistic QoS optimality with low 
network resource consumption for cloud service 
composition. 

 GA. The normal genetic algorithm (GA) uses uni-
form crossover and uniform mutation. The initial 
population for the GA was set to 20, and the max-
imum number of iterations was set to 30. We sup-
plied this GA with the standard QoS utility func-
tion. This is also a standard approach [49,50] to 
solving the service composition problem pres-
ently. 

 NetGA. It is a network-aware extension of GA. Be-
sides the same settings used for GA, it is extended 
with our network QoS utility function and net-
work resource consumption model. 

 MIP. Using a mixed integer program (MIP) is one 
of the most common approaches [13,40] to solv-
ing the service composition problem in web or 
cloud environments. We supplied this MIP with 
the standard QoS utility function. 

 NetMIP. Our proposed network-aware approach 
as described in Section 3. 

All experiments were conducted on the same cloud dat-
acenter established in the WebCloudSim cloud simulation 
system. A sufficient number of repetition tests were exe-
cuted. 

 
(a) Network resource consumption for service composition in the 

cloud with respect to the number of service classes. 

 
(b) Network resource consumption for service composition in the 

cloud with respect to the number of candidate services. 
Fig. 3 Comparison of network resource consumption for service composition 
in the cloud. Compared with MIP, GA, and PSO, our NetMIP method saves 
approximately 70% on average in network resources regardless of the num-
ber of service classes or candidate services in use. Compared with NetGA 
and NetPSO, our NetMIP saves approximately 50% on average in network 
resources regardless of the number of service classes or candidate services 
in use. 
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4.4 Network Resource Consumption 

In the cloud, a composite service often contains several 
concrete services. We note that the number of concrete 
services of a composite service is generally less than 10 in 
practice [51]. Hence, in this experiment, the number of 
service classes used varied from 2 to 7, and the number of 
candidate services varied from 2 to 9. For example, when 
the number of service class is 2 and the number of candi-
date services also is 2, there are at most 1000*22 services 
are used in the service composition process (note that 
many services are used multiple times). We set the delay 
of the composite service as the end-to-end QoS constraint 
and the size of network packet was set as 800 bytes. Fig. 
3 illustrates the comparison of network resource con-
sumption for the aforementioned six approaches. 

Fig. 3 shows that our NetMIP enabled CSPs to save 
more network resources than other approaches. For ex-
ample, in Fig. 3(a), the network resource consumption of 
our NetMIP approach is about 2,453 bytes on average, but 
other approaches (e.g., NetGA, at about 3,913 bytes, and 
GA, at about 9,624 bytes) are much more expensive in this 
respect. MIP, NetMIP, PSO, NetPSO, GA, and NetGA have 
network resource consumption ratios of about 3.0, 1.0, 
4.0, 2.0, 4.0, and 2.0, respectively. When there is only one 
service composition requirement, our NetMIP approach 
can save more than 1 MB of network resources. When 
there is a large number of users who use service compo-
sition in the cloud, NetMIP could save a significant amount 
of network resources. Similarly, in Fig. 3(b), the network 
resource consumption of our NetMIP is about 1,379 bytes 
on average, but other approaches (e.g., NetGA, at about 
3,536 bytes, and GA, at about 6,289 bytes) consume much 
more network resources on average. MIP, NetMIP, PSO, 
NetPSO, GA, and NetGA have network resource consump-
tion ratios of about 3.0, 1.0, 4.0, 3.0, 5.0, and 3.0, respec-
tively. With reference to Fig. 3, compared with MIP, GA, 
and PSO, our NetMIP approach saves approximately 70% 
on average in network resources regardless of the number 
of service classes or candidate services in use. Compared 
with NetGA and NetPSO, our NetMIP approach saves ap-
proximately 50% on average in network resources regard-
less of the number of service classes or candidate services 
in use. This means that our NetMIP approach can signifi-
cantly reduce network resource consumption, and is the 
best among all of the evaluated approaches.  

In contrast to MIP, PSO, and GA, our NetMIP approach 
considers the topology of fat-tree cloud datacenter net-
works, making full use of network QoS utility and a net-
work resource consumption model to find the optimal so-
lution for network-aware service composition in the cloud. 
In contrast to NetPSO and NetGA, our NetMIP approach 
uses mixed integer programming to optimize the cloud 
service composition problem. Owing to fat-tree topology, 
NetMIP is more effective than NetGA and NetMIP, which 

may be trapped in local optima.  
In summary, NetMIP significantly reduces network re-

source consumption regardless of the number of service 
classes or candidate services used in solving the service 
composition problem in the cloud.  

4.5 QoS Optimality 

 
(a) OoS optimality of service composition in the cloud with respect to 

the number of service classes. 

 
(b) QoS optimality of service composition in the cloud with respect to 

the number of candidate services. 
Fig. 4 Comparison of QoS optimality of service composition in the cloud. 
Compared with MIP, PSO, and GA, NetMIP improves by approximately 50% 
on average in QoS optimality regardless of the number of service classes or 
candidate services in use. Compared with NetPSO and NetGA, NetMIP im-
proves by approximately 15% on average in QoS optimality regardless of the 
number of service classes or candidate services in use.  

In the QoS optimality experiment, the settings used were 
the same as those stated in Section 4.4. Fig. 4 illustrates 
the comparative evaluation results for QoS optimality, in-
cluding network QoS. QoS optimality means that overall 
QoS utility is maximized. 

Fig. 4 shows that NetMIP can significantly improve the 
QoS optimality of service composition in the cloud. For ex-
ample, in Fig. 4(a), the QoS optimality of NetMIP is about 
1.0 on average, but other approaches attained lower val-
ues on average. MIP, NetMIP, PSO, NetPSO, GA, and NetGA 
have network resource consumption ratios of about 0.4, 
1, 0.4, 0.8, 0.4, and 0.9, respectively. Similarly, Fig. 4(b) 
shows that other approaches are also less effective than 
NetMIP on average. MIP, NetMIP, PSO, NetPSO, GA, and 
NetGA have network resource consumption ratios of 
about 0.4, 1.0, 0.4, 0.9, 0.4, and 0.8, respectively. With ref-
erence to Fig. 3, compared with MIP, PSO, and GA, NetMIP 
improves by approximately 50% on average in QoS opti-
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mality regardless of the number of service classes or can-
didate services in use. Compared with NetPSO and NetGA, 
NetMIP improves by approximately 15% on average in 
QoS optimality regardless of the number of service classes 
or candidate services in use. This means that NetMIP can 
effectively assure QoS optimality, and is the best among 
all of the evaluated approaches.  

In contrast to MIP, PSO, and GA, NetMIP considers the 
network QoS when searching for the optimal solution for 
network-aware service composition in the cloud. This is 
different from NetPSO and NetGA because, in practice, 
the solution space of service composition problems in the 
cloud is not very large; our NetMIP approach is more ef-
fective than NetGA and NetMIP in QoS optimality in the 
context of fat-tree cloud datacenter networks.  

Our NetMIP method significantly assures realistic QoS 
optimality regardless of the number of service classes or 
candidate services used when solving service composition 
problems in the cloud.  

4.6 Computation Time 

As shown in Fig. 5, we found that the computation time 
for NetMIP was very low. While the computation time for 
most approaches was higher than 200 ms, the computa-
tion time for NetMIP was about 80 ms on average regard-
less of the number of service classes or candidate services 
in use. With the exception of MIP, the computation time 
ratio between every other approach and NetMIP is about 
2:1. Moreover, NetMIP incurs little or insignificant compu-
tation time overhead to the cloud as far as we can observe 
in our experiments, and yields more practical values for 
fat-tree cloud datacenters. 

Finally, as Figs. 3, 4, and 5 show, our approach could 
achieve the best solutions with low network resource con-
sumption, and has a roughly linear algorithmic complexity 
with respect to problem size. NetMIP outperforms all of 
the other representative approaches. This means that 
cloud service providers can adopt our approach to opti-
mize cloud service (i.e., SaaS and IaaS) provision by a cen-
tral control with all level information of services and net-
work in the cloud data center. 

4.7 Study of Parameters 

In this section, for all of the evaluated approaches, we il-
lustrate the effects of different parameter settings on net-
work resource consumption, QoS optimality, and compu-
tation time. As shown in Figs. 6-8, the parameters include 
the bandwidth of the core and aggregation switches, the 
bandwidth of edge switches and the number (i.e., the pa-
rameter ps) of physical servers connected to one edge 
switch.  

 

 
(a) Computation time for service composition in the cloud with re-

spect to the number of service classes. 

 
(b) Computation time for service composition in the cloud with re-

spect to the number of candidate services. 
Fig. 5 Comparison of computation time for service composition in the cloud. 
MIP and NetMIP are the fastest methods, with computation times lower 
than 150 ms regardless of the number of service classes or candidate ser-
vices in use.  

 
(a) Effect of the bandwidth of the core and aggregation switches on net-

work resource consumption 

 
(b) Effect of the bandwidth of the core and aggregation switches on QoS 

optimality 
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(c) Effect of the bandwidth of the core and aggregation switches on com-

putation time 
Fig. 6 Effect of the bandwidth of the core and aggregation switches on the 
network resource consumption, QoS optimality, and computation time. 

 
(a) Effect of the bandwidth of the edge switch on network resource con-

sumption 

 
(b) Effect of the bandwidth of the edge switch on QoS optimality  

 
(c) Effect of the bandwidth of the edge switch on computation time  

Fig. 7 Effect of the bandwidth of the edge switch on network resource 

consumption, QoS optimality, and computation time. 

 
(a) Effect of the parameter ps on network resource consumption 

 
(b) Effect of the parameter ps on QoS optimality 

 
(c) Effect of the parameter ps on computation time 
Fig. 8 Effect of the parameter ps on network resource consumption, QoS 
optimality, and computation time 

4.7.1 Effect of the bandwidth of the core and aggregation 
switches  

Figs. 6 (a), (b), and (c) show the effect of the bandwidth of 
the core and aggregation switches on network resource 
consumption, QoS optimality, and computation time. To 
clearly show its impact, we varied the value of bandwidth 
from 10 Gps to 100 Gps with a step value of 10 Gps. The 
bandwidth of the edge switch was set to 1 Gps. Other set-
tings were the same as stated in Section 4.2.   

In short, Fig. 6 shows: 1) our NetMIP approach is the 
best among all of the evaluated approaches in terms of 
network resource consumption and QoS optimality; 2) the 
computation time of NetMIP is very close to that of MIP, 
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and both values are much lower than that of other ap-
proaches; 3) the network resource consumption of 
NetMIP was not substantially influenced by increasing 
bandwidth, and its network resource consumption was 
the lowest on average; 4) the less the computation time 
of NetMIP, the higher the bandwidth of the core and ag-
gregation switches; 5) the better the QoS optimality of 
NetMIP, the higher the bandwidth of the core and aggre-
gation switches. 

4.7.2 Effect of the bandwidth of the edge switch  

Figs. 7 (a), (b), and (c) show the effect of the bandwidth of 
the edge switch on network resource consumption, QoS 
optimality, and computation time. To clearly show its im-
pact, we varied the value of bandwidth from 1 Gps to 10 
Gps with a step value of 1 Gps. The bandwidth of the core 
and aggregation switches was set to 10 Gps. Other set-
tings were the same as stated in Section 4.7.1.  

In short, Fig. 7 shows: 1) NetMIP is the best among all 
of the evaluated approaches in terms of network resource 
consumption and QoS optimality; 2) the computation 
time of NetMIP was very close to that of MIP, and both 
were much lower than that of other approaches; 3) the 
network resource consumption of NetMIP was not sub-
stantially influenced by increasing bandwidth of the edge 
switch, and its network resource consumption was still the 
lowest on average; 4) the lower the computation time of 
NetMIP, the higher the bandwidth of the edge switch; 5) 
the better the QoS optimality of NetMIP, the higher the 
bandwidth of the edge switch.  

4.7.2 Effect of the parameter ps 

Figs. 8 (a), (b), and (c) show the effect of the number of 
physical servers connected to one edge switch on network 
resource consumption, QoS optimality, and computation 
time. To clearly show its impact, we varied the value of the 
parameter ps from 2 to 10 with a step value of 2. The 
bandwidth of the core and aggregation switches was set 
as 10 Gps. The bandwidth of the edge witch was set as 1 
Gps. Other settings were the same as stated in Section 
4.7.2.  

In short, Fig. 8 shows: 1) NetMIP is the best among all 
of the evaluated approaches in terms of network resource 
consumption and QoS optimality; 2) the computation 
time of NetMIP was very close to that of MIP, and both 
values are much lower than that of other approaches; 3) 
the lower the network resource consumption of NetMIP, 
the greater the number of physical severs; 4) the network 
resource consumption of NetMIP was still the lowest on 
average; 5) the greater the computation time of our 
NetMIP method, the higher the number of physical severs 
connected to one edge switch; 6) the better the QoS opti-
mality of NetMIP, the greater the number of physical serv-
ers.  

5 CONCLUSIONS 

In this paper, we proposed a network-aware approach to 
service composition in a fat-tree cloud datacenter, consist-
ing of a network resource consumption function, a net-
work QoS computation, and a network-aware service 
composition model. In contrast to current approaches in 
this area, our approach links services and networks, and 
considers network resource consumption in the service 
composition process. It has a roughly linear computation 
time with respect to problem size. Via the credible 
WebCloudSim system, we have validated that our NetMIP 
approach outperforms several representative cloud ser-
vice composition approaches in terms of network re-
source consumption, QoS optimality, and computation 
time.  

Note that our approach is not suitable for multiple data 
centers due to network topology confliction or non-dis-
ruptive load balancing strategy. In the future, we would 
like to investigate how our approach fares in scenarios 
with other data center sizes and more QoS attributes. We 
would also like to evaluate our approach based on other 
cloud datacenter network topologies and explore a good 
means of enhancing our proposed approach with soft-
ware defined network technologies. 
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