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Abstract—Recently, Low Earth Orbit (LEO) satellites expe-
rience rapid development and satellite edge computing emerges
to address the limitation of bent-pipe architecture in existing
satellite systems. Introducing energy-consuming computing
components in satellite edge computing increases the depth
of battery discharge. This will shorten batteries’ life and
influences the satellites’ operation in orbit. In this paper,
we aim to extend batteries’ life by minimizing the depth of
discharge for Earth observation missions. Facing the challenges
of wireless uncertainty and energy harvesting dynamics, our
work develops an online energy scheduling algorithm within an
online convex optimization framework. Our algorithm achieves
sub-linear regret and the constraint violation asymptotically
approaches zero. Simulation results show that our algorithm
can reduce the depth of discharge significantly.

Keywords-satellite edge computing; depth of discharge; on-
line convex optimization.

I. INTRODUCTION

Recently, Low Earth Orbit (LEO) satellites experience
rapid development due to the reduced cost of both man-
ufacturing and launching. Existing satellite systems operate
under a bent-pipe architecture [1], where ground stations
send control commands to orbits and satellites reply with raw
data. This architecture relies heavily on the satellite-ground
communication, which has limitations of high downlink
latency, intermittent availability, and link unreliability [2].
Satellite edge computing equips satellites with computing
resources and supports in-orbit data processing. Thus, it
can reduce the downlink transmission load and provide
scalability benefits when LEO satellite constellations scale
up [2].

Introducing energy-consuming computing components in
satellite edge computing brings a huge burden to energy
systems, of which the capacities are inherently constrained
due to strict volume and weight constraints [3]. Most LEO
satellites have solar cells installed on their surface to harvest
solar energy and store energy (usually in batteries) to keep
functioning during the eclipse. Both energy harvesting and
storage are constrained by physical sizes. For example, a
common category of LEO satellites, CubeSats, are among
[1, 15] kg in weight and of up to 12U in volume (1U =
10 cm × 10 cm × 10 cm) [4]. The harvested power of
CubSats ranges in [1, 7] watts because of the limited area
of the solar arrays [4]. Besides, the capacities of batteries in

CubeSats range in dozens of watt-hour [3]. Introducing the
computing components increases the depth of discharge (i.e.,
the amount of discharge energy) in each eclipse period. This
will greatly shorten batteries’ life, which further influences
the satellites’ operation in orbit [5]. Therefore, it is timely
and important to extend batteries’ life.

Extensive previous works focus on energy scheduling in
ground energy harvesting systems involving many issues
under different network contexts [6]–[9]. Applying these
works directly to satellite systems is appealing, but they
cannot address the challenges brought by high-speed satellite
movement. Moreover, none of them attempts to extend
batteries’ life. One related work [10] focuses on extending
batteries’ life by transmission power control in LEO satellite
networks. In our scenario, introducing edge computing to
LEO satellite networks makes the problem more complex
as it requires energy coordination between different energy-
consuming components.

It is non-trivial to extend the batteries’ life of LEO
satellites due to the following challenges. The first challenge
is how to optimize the depth of discharge in the unstable
wireless environment. Each satellite orbits the Earth every
∼100 minutes, traveling at ∼27,000 kmph [11]. This high-
speed movement of satellites creates high churn in satellite-
ground links. Further, the bitrates of satellite-ground links
are unpredictable due to the uncertainty of wireless environ-
ment such as weather conditions. The second challenge is
how to adapt to energy harvesting dynamics. Typical low
Earth orbits expose satellites to the Sun for about 66% of
each ∼100 minutes orbit period [4]. The periodical satellite
movement incurs significant energy harvesting dynamics
when satellites show up in light and eclipse alternatively.

In this paper, we seek to extend the batteries’ life in
satellite edge computing by reducing the depth of discharge.
We consider Earth observation missions, which consist of
three energy-consuming processes: sensing, computing, and
communication. We exploit the pattern information brought
by periodical satellite movement and propose a novel opti-
mal pattern-aware benchmark that generalizes state-of-the-
art. Given the uncertainty of the wireless environment and
the dynamics of energy harvesting, we propose a pattern-
aware online energy scheduling algorithm within the online
convex optimization framework. Our algorithm achieves



sub-linear regret (compared with the optimal pattern-aware
benchmark) and the constraint violation asymptotically ap-
proaches zero. Simulation results show that our algorithm
adapts to the energy harvesting dynamics and reduces the
depth of discharge significantly.

II. RELATED WORK

Energy scheduling in ground energy harvesting sys-
tems. Energy harvesting systems have been investigated
extensively on the ground. Most existing workS learn en-
ergy scheduling strategies online by reinforcement learning
method to address the uncertainty in the energy harvesting
process. Ortiz et al. learn a distributed energy allocation for
both a transmitter and a relay with only partially observable
system states [6]. Fraternali et al. aim to maximize the
sensing quality of energy harvesting sensors for periodic and
event-driven indoor sensing with available energy [7]. Huang
et al. propose an adaptive processor frequency adjustment
algorithm to plan the energy usage of energy harvesting edge
servers [8]. Hatami et al. control sensors status update to
minimize the energy cost considering the freshness require-
ment of the sensing information [9]. These works cannot
be applied directly to the satellite edge computing systems
for two reasons. First, they cannot address the challenges
brought by the unique satellite movement, i.e., intermittent
link availability. Second, they do not investigate the problem
of extending the batteries’ life.

Satellite edge computing. Satellite edge computing is
still in its infancy. Most existing works focus on the space-
air-ground network. Boero et al. [12], Giambene et al. [13],
and Shi et al. [14] design the space-air-ground network
architecture based on SDN and NFV technologies. Tang et
al. [15] manage resources for SDN-based satellite-terrestrial
networks in an on-demand way. Chen et al. propose the
time-varying resource graph to model resources in space-
terrestrial integrated networks [16]. They also investigate
how to dynamically place and assign controllers in LEO
satellite networks to adapt to satellite mobility and traffic
load fluctuation [17]. Besides, a few works focus on satellite
edge computing frameworks [18]. Denby et al. [2] propose
to support computing in nano-satellite constellations to ad-
dress existing ben-pipe architecture limitations. Tsuchida et
al. [10] also focus on extending battery life in transmission
power control problems for LEO satellite networks. Intro-
ducing edge computing to LEO satellite networks makes
energy scheduling more complex as it requires energy coor-
dination between different energy-consuming components.

III. SYSTEM MODEL

As shown in Figure 1, we consider an electrical power
subsystem model in satellites [19]. It encompasses efficient
and reliable energy generation, storage, and distribution to
various on-board subsystems. The electrical power subsys-
tem consists of a solar module, a battery module, a payload

Figure 1: System model.

module, and an energy scheduler. The solar module is
responsible for energy harvesting and transfer. Solar energy
is the dominant energy source of LEO satellites, and about
85% of nano-satellites are equipped with solar panels [3].
The energy storage module provides energy supply when the
solar energy is unavailable during on-orbit operations. The
payload module regulates the energy to the other subsystems.
On-board subsystems consume electrical energy to maintain
satellite orbit motion or perform various missions. The
energy scheduler decides how to allocate electrical energy
to these subsystems. In this paper, we consider an energy
scheduling problem for an Earth observation mission. To
optimize the energy allocation among sensing, computing,
and communication process, we abstract the energy harvest-
ing, storage, and distribution as an energy queue model as
shown in Figure 2. We divide time into slots indexed by t
with duration Td.

A. Energy Harvesting and Storage Model

Given the solar panel hardware, the energy harvesting rate
re(t) is dominated by two main factors: the light available
to a satellite solar array and the projected surface area of
the panels exposed to the Sun. The first factor varies with
the inverse square of the distance from the Sun. The second
factor varies with the angle between the solar panel and the
Sun. We model the harvested energy in each time slot t as

Etotal(t) = re(t)Td. (1)

The harvested energy varies intensely when satellites are
in different light conditions. In the light, the harvested
energy provides power to the energy-consuming subsystems
directly and charges the batteries. In the eclipse, batteries
provide energy to subsystems. The dynamics of energy
buffered in the batteries can be modeled as an energy queue

E(t) = min{max(E(t− 1) + Ein(t)− Eout(t), 0), Emax},
(2)

where Ein(t) is the amount of charge energy, Eout(t) is
the amount of discharge energy, and Emax is the maximal
battery capacity.

B. Energy Consumption Model

The energy consumption can be divided into two cat-
egories: the mission level energy consumption (including



Figure 2: Queue model.

sensing energy Esen(t), computing energy Ecmp(t), and
communication energy Ecom(t)) and the energy to perform
the fundamental operations of the satellites denoted by
Ea(t). The total energy consumption satisfies

Esen(t) + Ecmp(t) + Ecom(t) + Ea(t) ≤ (3)
Eout(t) + Etotal(t)− Ein(t).

1) Sensing Energy Model: The satellite collects the im-
ages of the Earth while moving along its orbit. The camera’s
frame rate fsen(t) (in frame/s) is adjustable to meet different
missions demands. The sensing energy is

Esen(t) = PsenTd, (4)

where Psen is the power of the camera.
2) Computing Energy Model: The sensed data (e.g., Earth

imagery) can be hundreds of Gigabytes and its quality is
fundamentally limited by the on-board cameras and orbit
altitude [2]. It is unnecessary to transmit all the raw data
to the ground. Besides, the satellite-ground downlink is not
always available and the link bitrate is affected by many
factors, e.g., orbit parameters, ground station capability, and
location. These necessitate in-orbit data computing, which
can significantly relieve the satellite-ground link pressure. A
typical on-board computing example is to identify images
of interest and separate them from raw data by CNN-
based image classification, objective detection, or any other
computation. The computing system adopts the dynamic
voltage and frequency scaling technique [20] to adjust
its CPU frequency denoted by fcmp(t) (in cycle/s). Let
0 ≤ fcmp(t) ≤ fmax

cmp (t), where fmax
cmp (t) is the maximal

CPU frequency. The computation energy consumption is

Ecmp(t) = af3cmp(t)Td, (5)

where a is the effective capacitance coefficient of computing
hardware.

3) Communication Energy Model: The satellite-ground
connection is intermittent because the satellite moves fast
with respect to ground stations and the downlink session
can only last for less than ten minutes in one single pass
[2]. The satellite stores the processed data before connecting
to a ground station. In each time slot t, the satellite-ground
connection Ic(t) is known as a prior, where Ic(t) = 1 means

that the satellite-ground connection is available, and vice
versa. We model the transmission rate R(t) (in bit/s) as

R(t) = B log2(1 +
Pcom(t)h(t)

N0
), (6)

where Pcom(t) is the transmit power of the satellite, N0

is the received noise power, and h(t) is the channel gain.
Let 0 ≤ R(t) ≤ RmaxIc(t), where Rmax is the maximal
transmission rate. The communication energy consumption
is

Ecom(t) = Pcom(t)Td. (7)

C. Data Queue Model

To describe the data buffers dynamics, we construct two
data queues: a waiting-for-computing data queue Qcmp(t)
between sensing and computing processes and a waiting-
for-transmitting data queue Qcom(t) between computing and
communication processes. The arrival rate of the queue is the
sensed data amount and the departure rate is the processed
data amount in the current slot. We can update the waiting-
for-computing data queue Qcmp(t) as

Qcmp(t) = max{Qcmp(t− 1) +As(t)− κfcmp(t)Td, 0},
(8)

where each CPU cycle executes κ bits of data known as a
prior, As(t) = Dfsen(t)Td is the amount of sensed data,
and D is the data size of each image frame.

After the mission completion, all sensed information is
required to be downloaded to the ground for further use.
Hence, we should have Qcmp(T + 1) = 0 with the initial
queue length Qcmp(1) ≥ 0 by the long-term constraint

T∑
t=1

(Dfsen(t)− κfcmp(t)) ≤ 0. (9)

The waiting-for-transmitting data queue Qcom(t) buffers
results of interest that need to be transmitted to the ground.
Similarly, we can update the waiting-for-transmitting data
queue as

Qcom(t) = max{Qcom(t− 1) + ρAp(t)−R(t)Td, 0},
(10)

where ρ ∈ [0, 1] is the effective data proportion, the
processed data amount Ap(t) = min{Qcmp(t − 1) +
As(t), κfcmp(t)Td}. Similar to (9), the long-term constraint
on Qcom(t) is

T∑
t=1

(ρκfcmp(t)−R(t)) ≤ 0. (11)



D. Problem Formulation

In this paper, we aim to extend the battery life by mini-
mizing the depth of discharge, i.e., the amount of discharge
energy over the time horizon T . We formulate the problem
as

min
{Eout,fcmp,R}

T∑
t=1

Eout(t) (12)

s.t. (3), (9), (11).

It requires a holistic optimization of discharge energy
amount, CPU frequency, and transmission rate to adapt to
system dynamics such as energy arrival rate and satellite
mobility, subject to real-time and long-term constraints.

IV. ALGORITHM DESIGN

If the full information of energy arrival rate and wireless
channel state information over the whole time horizon T is
known, the problem is a convex optimization, which can be
solved offline. In our scenario, the energy arrival rate can
be calculated precisely. However, the wireless channel state
information of the satellite-ground link is hard to predict in
a long run by complex prediction methods. If we can predict
the wireless channel state information in the current slot, the
problem is a stochastic network optimization problem. We
can adopt Lyapunov optimization theory to transform the
long-term problem into real-time ones, which are convex
optimization problems [21]. However, the channel state
information in the current slot is unknown before making
decisions. Hence, the scheduler should adapt its decisions
based on the results of previous slots. A typical setting
for such online optimization and learning is online convex
optimization [22].

A. Optimal Pattern-Aware Benchmark

Although the channel state information is unavailable, we
can exploit the pattern information when the satellite moves
around the Earth. For example, the periodical satellite move-
ment generates periodical-like pattern or trend information,
i.e., the satellite-ground connection is periodical as satellites
move around the Earth and satellites show up in the light and
eclipse alternately. We design a pattern-aware benchmark to
adapt to the different characteristics of the environment and
energy harvesting across time slots. Given the time horizon
T , we first create a partition which splits the pattern space Ω
into K = (L)N hypercubes of identical size 1

L×
1
L×· · ·×

1
L .

These hypercubes correspond to the different environment
and energy harvesting characteristics. Then we define the
time window Wk contains all the time slots whose pattern
c(t) belongs to the kth hypercube, i.e.,

Wk = {t : c(t) ∈ Ωk},∀k = {1, · · · ,K}. (13)

The partitioning of the time horizon captures a general
pattern information.

Then, we introduce an optimal pattern-aware bench-
mark to measure the performance of pattern-aware al-
gorithms. We denote the decision variable with x =
(Eout(t), fcmp(t), R(t)) and the objective function with
f t(x(t)) for simplicity. Given a sequence of channel state
information {h(1), · · · , h(T )} over the time horizon T , the
optimal pattern-aware benchmark finds K energy scheduling
strategies [x∗(1), · · · ,x∗(K)] for each time window Wk as

x∗(k) = arg min
x

∑
t∈Wk

f t(x), (14)

which is optimal regarding information only in the respective
time window Wk. The optimal pattern-aware benchmark is
unavailable because it requires the full knowledge of the
h(t) in each time window Wk. However, it captures energy
harvesting and satellite ground connection patterns.

A performance metric to evaluate the learning perfor-
mance of online algorithms is regret: the difference between
the online algorithm and a benchmark. The accumulative
regret of an algorithm with respect to the optimal pattern-
aware benchmark over the whole T time horizon is defined
as

RegA(T,K) =

T∑
t=1

f t(x(t))−
K∑
k=1

∑
t∈Wk

f t(x∗(k)). (15)

Our regret definition is different from the common met-
rics of static regret and dynamic regret [23] because all
three compare with different benchmarks. The static regret
compares with an optimal static benchmark which finds
the best fixed strategy x∗ in hindsight over the T time
horizon. The dynamic regret compares with an optimal
dynamic benchmark which finds the best strategy x∗(t) for
each time slot t. The pattern-aware regret is general as it
reduces to the static regret when K = 1 and to the dynamic
regret when K = T and each time slot has unique pattern
information. Note that the optimal dynamic benchmark has
the best performance compared with both the optimal static
benchmark and the optimal pattern-aware benchmark when
the underlying system optima is inherently changing [24].
We can infer that the optimal pattern-aware benchmarks with
larger K perform better in our scenario with the dynamics
of energy harvesting and the uncertainty of the wireless
environment. We aim to is find a sequence x(t) such that
the regret RegA(T,K) grows sub-linearly with respect to
T .

B. Online Energy Scheduling with No Regret

In Lyapunov optimization, we introduce virtual queues
to control the long-term constraint violations. Hence, we
introduce a low-complexity virtual queue based algorithm
that addresses our online convex optimization problem with
long-term constraints [25]. To describe the algorithm more
clear, we first introduce some notations. We denote the



gradient of the objective function as ∇f t(x(t)). The convex
set X0 is defined by instantaneous constraints, i.e.,

X0 = {x : 0 ≤ fcmp(t) ≤ fmax
cmp (t), (16)

0 ≤ R(t) ≤ RmaxIc(t), Eout ≥ 0},∀t.

We denote the long-term constraint functions as g(x(t)) =
(g1(x(t)), g2(x(t))) where g1(x(t)) = Dfsen(t)−κfcmp(t),
g2(x(t)) = ρκfcmp(t) − R(t). Let g̃(x(t)) = γg(x(t)),
where γ is a positive constant. We introduce a virtual queue
vector QV (t) = (QV1 (t), QV2 (t)) for the long-term con-
straint vector g(x(t)). The algorithm first chooses arbitrary
feasible x(1) ∈ X0 and then chooses x(t + 1) that solves
the following problem

min
x∈X0

{[∇f t(x(t))]T[x− x(t)] (17)

+ [QV (t) + g̃(x(t))]Tg̃(x) + α||x− x(t)||2},

where α is a positive constant and the virtual queues

QVi (t) = max{−g̃i(x(t)), QVi (t− 1) + g̃i(x(t))}. (18)

Note that the virtual queues are different from the data
queues and the energy queue in the system model. The value
of QV (t) is a queue backlog of constraint violations. By
introducing the virtual queue vector QV (t), the algorithm
transforms the long-term constraints into queue length vari-
ation and solve the problem in (17) in each time slot t.

Linear constraints. We observe that our g(x(t)) is affine
i.e, g(x(t)) = Ax−b, where A = [0,−κ, 0; 0, ρκ,−1] and
b = [−Dfs(t), 0]T, then the update of x(t + 1) can be
solved by a projection onto a convex set as in Lemma 1.

Lemma 1. [25] If g(x(t)) is affine, i.e, g(x(t)) = Ax−b
for some matrix A and vector b, then we can update x(t+1)
as

x(t+ 1) = Px∈X0

[
x−

(
x(t)− 1

2α
d(t)

)]
, (19)

where

d(t) = ∇f t(x(t)) +

2∑
i=1

[QVi (t) + g̃i(x(t))]∇g̃i(x(t)).

(20)

We design our pattern-aware online energy scheduling
algorithm as in Algorithm 1. Our algorithm exploits the
periodical energy harvesting and connection information
then it learns to make decisions based on the historical
information in each time window Wk. We use t1k, t

τ
k to

denote the first time slot and the τth time slot in each time
window Wk, respectively. At t = t1k of Wk, our algorithm
chooses any feasible energy scheduling strategy because
it has no previous information to rely on. At t = tτk of
Wk, it updates the energy scheduling strategy by solving
the projection in (21). After receiving the channel state
information of the current slot, it updates virtual queues,

Algorithm 1 Pattern-Aware Online Energy Scheduling

Input:
Constant parameter α, γ, β, time slot duration Td, en-
ergy related parameters: Etotal(t), Ea(t), Emax, sens-
ing related parameters D, Psen(t), fsen(t), computing
related parameters κ, ρ, fmax

cmp , communication related
parameter B,N0, Ic(t), R

max.
Output:

Energy scheduling strategies x(t), t = {1, · · · , T}.
1: Initialization: Qcom(0), Qcmp(0), E(0), QVi (0) as 0.
2: for Each time slot t = 1, · · · , T do
3: Identify time window Wk 3 t
4: if t = t1k for Wk then
5: Choose arbitrary x(t1k) ∈ X0.
6: else
7: Choose x(tτk) by solving the projection

Px∈X0

[
x−

(
x(tτ−1k )− 1

2α
d(tτ−1k )

)]
. (21)

8: end if
9: Observe actual h(t).

10: Update the virtual queue vector QV via

QVi (t) = max{−g̃i(x(t)), QVi (tτ−1k ) + g̃i(x(t))}.
(22)

11: Update the energy queue E(t), data queues Qcom(t)
and Qcmp(t) according to (2), (8), (10).

12: end for

the energy queue, and data queues via (25), (2), (8), and
(10), respectively. Our algorithm is simple as it either selects
a strategy arbitrarily or performs an easy gradient descent,
incurring neglected energy consumption.

Performance Analysis. We analyze the objective function
and constraints then make a mild assumption for the theoret-
ical proof. The feasible region X0 is bounded in our problem,
then there exists a constant G1 such that ||x−y|| ≤ G1 and
a constant G2 such that ||g(x)|| ≤ G2, for all x,y ∈ X0.
The objective function has bounded gradient on the feasible
region X0, i.e., ||∇f t(x(t))|| = 1,∀x, t. There exists a
constant β such that ||g(x) − g(y)|| ≤ β||x − y|| for all
x,y ∈ X0.

Assumption 1. Assume that there exist ε and x̂ ∈ X0 such
that gi(x̂) ≤ ε for all i = 1, 2.

The slater condition is mild for convex optimization.
We characterize the regret and constraint violations for
Algorithm 1 through the analysis of a drift plus penalty
expression following the idea of [25] as in Lemma 2.

Lemma 2. Consider online convex optimization with long-
term constraints that satisfy Assumption 1. Let x∗ ∈ X0

be any fixed solution that satisfies g(x∗), e.g., x∗ =



arg minx∈X0

∑T
t=1 f

t(x). Let γ > 0, η > 0 be arbitrary.
1. If α ≥ 1

2 (γ2β2 +η) in Algorithm 1, then for all T ≥ 1,
Algorithm 1 in [25] has
T∑
t=1

f(x(t)) ≤
T∑
t=1

f(x∗) + α||((x∗ − x(1))||2 +
T

2η
. (23)

2. For all T ≥ 1, the constraint violations of Algorithm 1 in
[25] is bounded as

T∑
t=1

gi(x(t)) ≤ 2G2 +
αG2

1 +G1

γ2ε
+

2G2
2

ε
,∀i = 1, 2. (24)

We extend theoretical results of [25] to fit the context of
our pattern-aware scenario as follows.

Theorem 1. If γ = T 1/4, η =
√
T and α = 1

2 (β2 + 1)
√
T ,

for all T ≥ 1, our algorithm has sublinear regret as
K∑
k=1

∑
t∈Wk

f(x(t)) ≤
K∑
k=1

∑
t∈Wk

f(x∗(k)) +O(
√
T ). (25)

For all T ≥ 1, the constraint violations are bounded as
K∑
k=1

∑
t∈Wk

gi(x(t)) ≤ 2KG2+ (26)

K( 1
2 (β2 + 1)G2

1 +G1 + 2G2
2)

ε
+
KG1

ε
√
T
.

Proof: We adopt Lemma 2 for each time window Wk,
separately. If α ≥ 1

2 (γ2β2 + η) in Algorithm 1, then for all
|Wk| ≥ 1, we have∑
t∈Wk

f(x(t)) ≤
∑
t∈Wk

f(x∗) + α||((x∗(k)− x(t1k))||2 +
|Wk|
2η

.

(27)

For the whole time horizon T , we have
K∑
k=1

∑
t∈Wk

f(x(t)) ≤
K∑
k=1

∑
t∈Wk

f(x∗) (28)

+

K∑
k=1

α||((x∗(k)− x(t1k))||2 +

K∑
k=1

|Wk|
2η

.

If γ = T 1/4, η =
√
T and α = 1

2 (β2 +1)
√
T , we have (25).

The constraint violation bound is irrelevant to the time
horizon. Thus, for each time window Wk, we have∑

t∈Wk

gi(x(t)) ≤ 2G2 +
αG2

1 +G1

γ2ε
+

2G2
2

ε
,∀i = 1, 2.

(29)

For the whole time horizon T , we have
K∑
k=1

∑
t∈Wk

gi(x(t)) ≤ K(2G2 +
αG2

1 +G1

γ2ε
+

2G2
2

ε
),∀i = 1, 2.

(30)

If γ = T 1/4, η =
√
T and α = 1

2 (β2 +1)
√
T , we have (26).

Theorem 1 implies that if we choose γ = T 1/4 and
α = 1

2 (β2 + 1)
√
T in Algorithm 1 then we can achieve

O(
√
T ) regret and O( 1√

T
) constraint violation. Note that

the theoretical results are based on the parameters G1, G2, ε
while it only requires β to implement Algorithm 1, which is
known since the constraint functions g(x(t)) do not change.

V. SIMULATION RESULTS

A. Simulation Setting

We simulate a scenario where an LEO satellite orbits the
Earth and captures Earth images according to the mission
demand. We select a 6am Sun-synchronous orbit and the
orbit altitude is set to 550km. We simulate two ground
stations, one in the light and the other in the eclipse. The
satellite harvests energy as it orbits the Earth. We calculate
the energy harvesting rate re(t) (in J/min) by re(t) =
Emax
s cos(θt), where Ed is the maximal harvest power and

θt is the angle between the Sun and the normal vector of
the solar panel mentioned in Section III-A. We set Ed = 30
J/min and θt varies between [0, π/2]. We set the main
simulation parameters according to [3] and [26]. The energy
consumption of other subsystems Ea = 0 for simplicity.
Battery capacity Emax = 10800 J, and the battery is full
of charge at the beginning of the mission. The data size of
each frame is set to 60 Mbits. The sensing power is set to
2 J/min. Sensing frame rate fsen(t) is randomly generated
in [0, 4]. The data to computation ratio κ is set to 0.1
bit/cycle. The effective data proportion ρ = 0.25. Maximal
CPU frequency fmax

p = 4 GHz. Bandwidth B = 80 MHz.
Parameter h/N0 is randomly generated in [15, 20]. Maximal
transmission bitrate Rmax is set to 500 Mbit/s. Algorithm
Parameters are set to β = 14 and γ = 14401/4. In the
simulation, we schedule the energy every one minute over
24 hours. Hence, the whole time horizon T = 1440. We
divide the whole time horizon into K = 4 time windows.

Baseline Approaches. We compare our algorithm with
three baselines as follows.

1) Optimal dynamic benchmark. The scheduler knows
channel state information {h(1), · · · , h(T )} over the time
horizon T and finds optimal energy scheduling strategies
[x∗(1), · · · ,x∗(T )]. This benchmark provides a perfor-
mance upper bound for the evaluated algorithms. We achieve
the optimal dynamic benchmark directly by the convex
optimization tool, CVX [27].

2) Optimal pattern-aware benchmark. The scheduler
knows channel state information {h(1), · · · , h(T )} over the
time horizon T and finds K energy scheduling strategies
[x∗(1), · · · ,x∗(K)] for each time windowWk as defined in
(14), which is optimal only regarding energy arrival rate in
each time window Wk.

3) Greedy algorithm. The scheduler knows channel state
information of the current time slot h(t) and allocate min-
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imal energy to sensing, computing, and communication to
satisfy the constraints in (9) and (11) in each time slot t.

B. Simulation Results

In Figure 3, the depth of discharge of our algorithm is
less than both the optimal pattern-aware benchmark and the
greedy algorithm over the time horizon when the energy
harvesting capability varies in the range of [20, 130] J. The
optimal dynamic benchmark achieves the minimal depth of
discharge. With the full information, it allocates the least
energy only for sensing and no energy for computation and
communication in the eclipse. And it allocates as much
energy (directly from the solar panels) as possible to finish
the accumulative workloads in the light. As expected, the
optimal pattern-aware benchmark performs worse than the
optimal dynamic benchmark because it only optimizes for
each time window without global scheduling and gets 4
fixed solutions for each orbit period, which cannot track the
system dynamics. Our algorithm can adapt to the system
dynamics by learning from historical information. In our
algorithm, the depth of discharge decreases slowly with
the harvested energy density. It implies that our algorithm
is robust to the variation of maximal harvesting energy
and can work well with limited harvesting capability. The
optimal dynamic benchmark is also robust to the variation
of maximal harvesting energy.

In Figure 4, we aim to evaluate how the effective data
proportion impacts our algorithm. We set the parameter ρ
in [0.1, 1] and record the sum of the amount of discharge
energy over the whole time horizon T . We can observe that
our algorithm performs better than both the optimal pattern-
aware benchmark and the greedy algorithm when ρ ≤ 0.5
and its amount of discharge is larger than the optimal
pattern-aware benchmark when ρ > 0.5. The effective data
proportion influences the data amount to be transmitted to
the ground. The transmission rate will increase with ρ, and
the energy increases exponentially with transmission rate,
which results in deeper battery discharge in the downlink
session of the eclipse. The greedy algorithm performance de-
teriorates most sharply with ρ. The two optimal benchmarks
are robust to the variation of ρ because they can optimize
in larger timescale and keep the workload to be processed
or transmitted in the light to reduce the depth of discharge

in the eclipse.
In Figure 5 and Figure 6, our algorithm has no regret

against the optimal pattern-aware benchmark and the con-
straint violation asymptotically approaches zero as proved in
Theorem 1. We plot the accumulative regret and constraint
violations with time under different values of parameter β.
Despite the energy harvesting dynamics and the lack of
channel gain information, our algorithm can achieve a near-
optimal solution. When β = 0 (not a validate value), the
accumulative regret grows linearly with the time horizon
because it leads to a large step size 1

2α in (19) and the
learning performance is poor. The regret gets smaller with
the increase of β. Increasing β will result in smaller step size
1
2α , the algorithm will fail to adapt to the system dynamics,
thus incurring many constraint violations as in Figure 6. We
find that our algorithm can achieve the minimal depth of
discharge without constraint violations when β = 14.

VI. CONCLUSION

In this paper, we extend the batteries’ life of LEO satellites
by minimizing the depth of discharge for Earth observa-
tion missions. We propose a pattern-aware online energy
scheduling algorithm that decides the depth of discharge,
CPU frequency, and transmission rate under lack of wireless
channel state information. Our algorithm has a theoretical
guarantee of learning loss and reduces the depth of discharge
significantly. Even our solution cannot fundamentally extend
batteries’ life like inventing new battery materials, it can
work well together with those advanced battery technologies.
In future work, we are interested to optimize the depth
of discharge for large-scale constellations with satellites
collaboration.
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