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Abstract—In mobile edge computing, popular mobile applications, such as augmented reality, usually offload their tasks to
resource-rich edge servers. The user experience can be considerably affected when many mobile users compete for the limited
communication and computation resources. The key technical challenge in task offloading is to guarantee the Quality of Service (QoS)
for such applications. Existing work on task offloading focus on deterministic QoS (delay) guarantee, which means that tasks have to
complete before the given deadline with 100%. However, it is impractical to impose a deterministic QoS guarantee for tasks due to the
high dynamics of the wireless environment when offloading to edge servers. In this paper, we focus on task offloading with statistical
QoS guarantee (tasks are allowed to complete before a given deadline with a probability above the given threshold), which can further
save more energy by loosing the QoS requirement. Specially, we first propose a statistical computation model and a statistical
transmission model to quantify the correlation between the statistical QoS guarantee and task offloading strategy. Then, we formulate
the task offloading problem as a mixed integer non-Linear programming problem with the statistical delay constraint. We transform the
statistical delay constraint into the constraints on CPU cycle numbers and the delay exponent respectively. We propose an algorithm to
provide the statistical QoS guarantee for tasks using convex optimization theory and Gibbs sampling method. Experiment results show
that the proposed algorithm outperforms the three baselines.

Index Terms—Mobile edge computing, task offloading, resource allocation, statistical QoS requirement, energy efficiency.
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1 INTRODUCTION

1.1 Background & Motivation

In mobile edge computing, popular mobile applications,
such as augmented reality and mobile object recognition,
usually offload their tasks to nearby resource-rich edge
servers [1–3] because mobile devices have limited computa-
tion resource and battery power. The key technical challenge
in task offloading is to guarantee the delay-bounded Quality
of Service (QoS) for such applications due to two reasons.
First, the experience of mobile users can be considerably
affected when a large number of offloading users compete
for the limited communication and computation resources.
Second, offloading computational tasks to edge servers can
incur extra communication overhead in terms of delay and
energy consumption.

However, most of the existing studies [4–9] on task of-
floading in mobile edge computing focuses on deterministic
delay-bounded QoS guarantees, which means that tasks
have to complete before the given deadline with 100%.
Although they are effective to satisfy users’ QoS require-
ment, it is difficult and impractical to impose a deterministic
delay requirement for tasks in a highly dynamic wireless
environment because the wireless environment is noisy
and may result in transient performance drawdown [10].
In this paper, we concern task offloading problem with
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statistical delay-bounded QoS guarantee to maximize en-
ergy efficiency of mobile devices. Statistical delay-bounded
QoS guarantee means that tasks are allowed to complete
before a required deadline with a probability above a given
threshold. For example, to guarantee the performance of
multimedia applications, a video frame decoding task is
required to complete before 10ms with a probability bigger
than 96% [11, 12].

1.2 Challenges and Our Solutions

Supporting statistical delay-bounded QoS provisioning [13–
17] for task offloading in mobile edge computing imposes
two key challenges. The first challenge is how to quantify
the correlation between the statistical delay requiremen-
t and the task offloading strategy. Only quantifying this
correlation can we know how to make task offloading
decisions to efficiently guarantee the specified statistical de-
lay requirement under the constrained communication and
computation resource. This is challenging because the cor-
relation is not straightforward, which causes a gap between
task offloading strategy design and statistical delay require-
ments. Mathematical analysis is badly in need to bridge
this gap. The second technical challenge is to design an
efficient holistic solution with low time complexity. This is
challenging because mobile users are heterogeneous in com-
puting capabilities and task requests, and the heterogeneity
of edge server capacity further augments the complexity.
In addition, the offloading decisions of different mobile
users are coupled with each other. The time complexity of
task offloading strategy is exponential when all the mobile
devices are coordinated.
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To deal with above issues, we propose a novel task
offloading algorithm with statistical delay-bounded QoS
guarantee by leveraging convex optimization theory and
Gibbs sampling method. More precisely, we first propose a
statistical computation model and a statistical transmission
model to quantify the correlation between the statistical QoS
guarantee and task offloading strategy. With the statistical
computation model, we can provide the statistical QoS
guarantee to save more energy by configuring CPU clock
frequencies. With the statistical transmission model, we can
provide the statistical QoS guarantee by introducing a statis-
tical delay exponent to the traditional wireless transmission
rate. Then, we formulate the task offloading problem as a
Mixed Integer Non-Linear Program (MINLP) with the sta-
tistical delay constraint. By probability analysis and queue
theory, we transform the statistical delay constraint into the
constraint on the number of CPU cycles and the constraint
on the statistical delay exponent respectively. At last, we
propose a novel holistic task offloading algorithm with low
time complexity to provide the statistical QoS guarantee.
The algorithm works in an iterative manner, which has two
layers. In the outer layer, the algorithm makes task offload-
ing decisions based on a variation of Gibbs sampling. In the
inner layer, the algorithm optimizes resource allocations by
convex optimization under a fixed task offloading decision.

1.3 Our Contributions

The contributions of this paper are summarized as follows.

1) We conduct an end-to-end analysis for task offload-
ing in mobile edge computing with the statistical
QoS guarantee.

2) We propose a statistical computation model and a
statistical transmission model to quantify the cor-
relation between the statistical QoS guarantee and
task offloading strategy.

3) We formulate the statistical QoS driven task offload-
ing problem as an MINLP problem. And we pro-
pose a novel holistic task offloading algorithm based
on convex optimization theory and a variation of
Gibbs sampling. The proposed algorithm is proven
to converge with a high probability to the global
optimal solution.

4) We conduct extensive simulations to evaluate the
proposed algorithm from two aspects: effectiveness
and efficiency. In terms of effectiveness, the pro-
posed algorithm can achieve near optimality in s-
mall network size and improve the energy efficien-
cy of mobile devices by 17.7%, 31.1%, and 268.3%
compared with the three baselines: hJTORA scheme,
Greedy scheme and LOC scheme. In terms of ef-
ficiency, the proposed algorithm can converge and
scale linearly with the network size.

The reminder of this paper is organized as follows. In
Section 2, the related work is reviewed. The system model
is introduced in Section 3. The problem formulation and
analysis is presented in Section 4. In Section 5, the holis-
tic solution for statistical QoS driven task offloading and
resource allocation is developed. The numerical results are
shown in Section 6. Conclusions are drawn in Section 7.

2 RELATED WORK

Prior task offloading schemes in mobile edge computing
system can be divided into two categories: deterministic
QoS guarantee and statistical QoS guarantee.

Task Offloading with Deterministic QoS Guarantee:
Most work has studied the task offloading problem with de-
terministic delay-bounded QoS guarantee [3–9]. These work
can be divided into centralized schemes and distributed
schemes. For the centralized schemes, some work focuses
on the task offloading problem for a single user. Wang
et. al [4] propose an algorithm to jointly optimize of the
offloading ratio, transmit power and CPU-cycle frequency
to minimize the mobile energy consumption (or latency)
subject to a delay(or energy consumption) constraint for
a single user. Zhang et. al [7] propose an energy-optimal
execution strategy based on threshold to decide executing
mobile applications in the mobile device or offloading to
the cloud for a single user. While these works may be not
practical when many users offload their tasks simultane-
ously. Some work focuses on task offloading problem for
multiple users. Mao et. al [5] assume a stochastic task arrival
model. They propose an online joint radio and computation-
al resource management algorithm for multi-user mobile
edge computing system based on Lyapunov optimization
to minimize the long-term average power consumption of
the mobile devices and the edge server. You et. al [8] prove
that the optimal strategy for scheduling the offloading data
size and time allocation has a threshold based structure
for multi-user mobile edge computing system with respect
to an offloading priority function derived from the mobile
energy consumption and channel condition. These work
solves the task offloading problem in a centralized manner,
which may lead to high time complexity when network size
scales up. Some other research targets distributed schemes
using game theory. A distributed algorithm based on game
theory has been designed to make task offloading decisions
to minimize the energy consumption in [3]. Furthermore,
this work was extended in [9], where the mobile device
can offload tasks to multiple access points equipped with
a common edge server. In comparison, we are interested in
providing a statistical QoS guarantee for task offloading in
mobile edge computing.

Task Offloading with Statistical QoS Guarantee: The
statistical delay-bounded QoS provisioning has been pro-
posed and shown to be a powerful technique to charac-
terize and implement the statistical delay-bounded QoS
provisioning for wireless transmission [18–22]. Zhang and
Wang [19] propose the collaborative learning schemes by
choosing the optimal operation strategies and power allo-
cation policies through learning from the energy harvesting
process while satisfying the heterogeneous statistical delay-
bounded QoS constraints over full-duplex cognitive radio
networks. Zhang et al. [20] establish the heterogeneous
statistical QoS provisioning framework to support the di-
verse real-time services over the airborne mobile wireless
networks. Cheng et al. [21] develop and efficient statistical
delay-bounded QoS driven green power allocation schemes
to maximize the effective power efficiency, enabling the
effective implementation of green 5G wireless networks.
The statistical QoS provisioning has been studied for edge
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computing-enabled wireless networks [13–17]. Zhang and
Zhu [13] propose efficient hierarchical edge caching mech-
anisms to guarantee the statistical delay-bounded QoS
for multimedia transmissions while minimizing redundant
transmissions. D2D communication schemes are proposed
in [14] over edge-computing networks under the hetero-
geneous statistical delay-bounded QoS requirements. Wang
et al. [15] propose a novel end-to-end effective capacity for
the edge network to analyze the long-term performance of
edge network slicing. Zhang and Zhu [16] propose a novel
software-defined network architecture for heterogeneous
statistical QoS provisioning over 5G multimedia mobile
wireless networks based on network-function virtualization.
They also propose the overall two-hop wireless link QoS
provisioning schemes by deriving the overall effective ca-
pacity’s expression of the two-hop tandem wireless links
as a function of the single-hop’s effective capacities [17].
Different from them, we study the end-to-end task offload-
ing process with statistical QoS guarantee by determining
the task offloading decisions and corresponding resource
allocation to maximize mobile devices’ energy efficiency in
mobile edge computing.

3 SYSTEM MODEL

We consider a multi-user multi-server mobile edge comput-
ing system in the ultra-dense network. Each base station (B-
S) is equipped with an edge server to provide computation
ability to User Equipments (UEs). We introduce a new com-
putation control entity in the system model, which is called
Small cell Cloud Manager (SCM) [8]. We deploy the SCM
as functions of one BS in the network area. The SCM makes
task offloading strategy periodically at the beginning of each
task offloading round. The task offloading strategy includes
both task offloading decision (whether and where to offload)
and corresponding resource allocation. SCM obtains the in-
formation of BSs, UEs, and network, e.g., edge computation
resource availability, parameters and QoS requirements of
UEs, and the instantaneous channel information. Then, the
SCM optimize the offloading strategy. If tasks are executed
in UEs (local execution), SCM will optimally schedule the
CPU clock frequency of UEs. If tasks are executed in edge
servers (edge execution), SCM will optimally allocate the
transmit power of UEs and computational resource of edge
servers. Finally, the offloading decision is delivered to UEs
and BSs.

Denote the set of BSs (edge servers) and UEs as S =
{1, 2, · · ·M} and U = {1, 2, · · ·N} respectively. BSs can
establish wireless links with UEs. Orthogonal frequency
division multiple access scheme is considered in the uplink
and the operational frequency band Bband is divided into K
equal sub-bands of size B = Bband/K. Let B = {1, · · · ,K}
be the set of available sub-bands at each BS. Each UE
is assigned to at most one sub-band. The task offloading
strategy is defined as a = {aijk |i ∈ U , j ∈ S, k ∈ B}, where
aijk = 1 indicates that task from the ith UE is offloaded
to the jth BS on the kth sub-band, otherwise aijk = 0. A
feasible offloading decision must satisfy the constraints,∑

k∈B

∑
j∈Si

aijk ≤ 1,∀i ∈ U (1)

TABLE 1: Notation

Notation Definition/Description
N Number of UEs
M Number of BSs
K Number of sub-bands
Ts Duration of an offloading round
Li Input data size of the ith UE
Xi Number of CPU cycles for computing one bit of tasks
Di,ddl Task completion deadline of the ith UE
ρi Task completion probability of the ith UE
Wi Number of CPU cycles required by the task
Wi,ρ Required CPU cycles with task completion probability ρ
fi(w) Clock frequency of the CPU in each cycle
η1i,ρ Energy efficiency of local execution
B Bandwidth of a sub-band
aijk Task offloading decision of the ith UE
hijk Channel gain of the ith UE
pi Transmit power of the ith UE
rijk Transmission rate of the ith UE
θi Statistical delay exponent of the ith UE
Cei (θi) Effective capacity of the ith UE
Zj Computation capacity of the jth BS
Zij CPU cycles that edge the jth server allocates to the ith UE
λi Weight of the ith UE
η2i,ρ Energy efficiency of edge execution

and ∑
i∈U

aijk ≤ 1,∀j ∈ S, k ∈ B. (2)

The set of UEs offloading their tasks to the jth BS is denoted
by Uj = {i ∈ U|

∑
k∈B

aijk = 1}, then the set of users those

decide to offload their tasks can be denoted by Uoff = ∪
j∈S
Uj

and the set of users those execute tasks locally can be
denoted by U\Uoff . The main parameters are summarized
in TABLE 1.

3.1 Task Model

Each UE has one computation task during an offloading
decision round [4]. It is necessary to capture the essential
of tasks when depicting them. Hence, a task model is
characterized by a tuple of four parameters, denoted by
Ai(Li, Xi, Di,ddl, ρi), in which Li specifies the size of input
data necessary for the task execution, Xi is the number of
CPU cycles demanded to compute one bit of tasks. Xi has
shown to be a random variable and can be modeled by a
Gamma distribution, which is suitable for characterizing
the distribution of CPU cycle demands [7]. Tasks have a
statistical QoS requirement with Di,ddl specifying the task
completion deadline and ρi specifying the task completion
probability, i.e., Pr(Di ≤ Di,ddl) ≥ ρi. The task is atomic
and cannot be divided into subtasks.

3.2 Statistical Computation Model

In local execution, the energy consumption is dominated by
the CPU workload. The CPU workload can be measured by
the number of CPU cycles required by tasks, denoted as Wi.
We define the CPU workload as the product of the input



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2020 4

data size and the complexity of the algorithm in the task,
which can be expressed as

Wi = LiXi. (3)

The CPU power consists of the dynamic power, the short
circuit power and leakage power, where the dynamic power
dominates [12]. As a result, we only consider the dynamic
power for the local execution. The energy consumption in
local execution can be minimized by configuring the clock
frequency of the chip via dynamic voltage scaling [12]. The
clock frequency of UEs is defined as f = {fi(w) |i ∈ U },
which cannot exceed the frequency limit fi,max. The energy
per operation Ei,w(fi(w)) is proportional to V 2, where V is
the supply voltage to the chip [12]. Moreover, it has been ob-
served that, when operating at low voltage limits, the clock
frequency of the chip is approximately linear proportional to
the voltage supply V [7]. The energy consumption per CPU
cycle can be expressed as Ei,w(fi(w)) = κf2

i (w), where κ
is the effective switched capacitance depending on the chip
architecture.

In the statistical computation model, we define the statis-
tical QoS requirement as that the task should finish the exe-
cution before the deadline with a probability above ρi by al-
locatingWi,ρ CPU cycles, FWi(Wi,ρ) = Pr[Wi ≤Wi,ρ] ≥ ρi.
Since Wi is a linear function of Xi , Wi,ρ can be calculated as
Wi,ρ = F−1

Wi
(ρi) = LiF

−1
Xi

(ρi), where F−1
Xi

(ρi) is the inverse
cumulative distribution function of Xi. Therefore, we can
derive the total energy consumption under statistical delay
requirement as

Ei = κ

Wi,ρ∑
w=1

F cWi
(w)[fi(w)]

2
, (4)

where F cWi
(w) = 1 − F cWi

(w), which is the complementary
cumulative distribution function ofWi. The completion time
of local execution is

t1i =
Wi∑
w=1

1

fi(w)
. (5)

When the task execution fails to meet its deadline, it will
continue to execute at the maximum frequency for com-
pletion. The additional computation energy is negligible
when the task completion probability is very close to 1. The
statistical computation model has shown its effectiveness in
saving energy without substantially affecting performance.

3.3 Statistical Transmission Model
In edge execution, we make some assumptions. First, tasks
have been replicated on the edge server initially. UEs only
transmit the input data of size necessary for execution to
the edge server. Second, the delay of edge server execution
comprises the following three parts, (i) the time to transmit
the input to edge servers, (ii) the time to execute tasks at
the edge servers, and (iii) the time to transmit the output
from edge servers back to users. Assume that the output
data size is much less than that of input, and the downlink
transmission rate is relatively high, so the return time of
results is negligible.

We consider a block fading model for underlying wire-
less links. The channel coefficients stay invariant within a

block of duration Tb (here Tb < min
i
{Di,ddl} ) and vary

independently from block to block. Denote the channel gain
of the ith UE on the kth sub-band of the jth BS as hijk. SCM
knows the probability distribution of hijk. Denote transmit
power allocation strategy as p = {pi|0 < pi ≤ pi,max},
where pi,max is the maximal transmit power of the ith UE.

When UEs transmit their tasks simultaneously, they
will suffer interference from each other. The intra-cell in-
terference is well mitigated due to that UEs connected
to the same BS use different sub-bands. Still, the inter-
cell interference from UEs of different cell using the
same sub-band exists. In this case, the signal to inter-
ference and noise ratio of the ith UE and the jth BS
on the kth sub-band is given by: γijk =

pihijk
Iijk+N0

, here,
Iijk =

∑
m∈S\{j}

∑
n∈U\Uj

anmkPnhnmk. For better tractability

and simplicity, an achievable upper bound of Iijk is given
as follows, Îijk =

∑
m∈S\{j}

∑
n∈U\Uj

anmkPn,maxhnmk. And

the estimation of signal to interference and noise ratio is
γ̂ijk =

pihijk
Îijk+N0B

. Then the achievable data rate of the ith UE
associated with the jth BS on the kth sub-band in one block
with duration Tb can be calculated as

rijk = TbBlog2(1 + γ̂ijk). (6)

Denote θi (θi > 0) to be the statistical delay exponent of
the ith UE. The effective capacity, which is the maximum
constant arrival rate under the statistical delay requirement
specified by θi , is as follows,

Cei (θi) = − 1

θi

∑
k∈B

∑
j∈S

lnE
{
e−θiaijkrijk

}
. (7)

Let gijk (hijk) be the probability density distribution of
hijk. gijk (hijk) is continuously differentiable in hijk, which
is true for almost all practical situations. Therefore, the
expectation in Eq.(7) with respect to the random variables
hijk can be evaluated with the following expression,

Cei (θi) = − 1

θi

∑
k∈B

∑
j∈S

ln

∫ ∞
0

e−θiaijkrijkgijk (hijk)dhijk.

(8)
We can derive the transmission time as

t2i =
LTb
Cei (θi)

. (9)

3.4 Edge Computation Resource Allocation Model
Edge servers are able to provide computation offloading
service to multiple UEs concurrently. All task executions
are parallel in each task offloading round. As mentioned
in Section 3.1, the task Ai requires Wi,ρ CPU cycles to
complete the task in a probabilistic execution in the UE.
The edge execution also requires Wi,ρ CPU cycles and edge
servers can automatically schedule the clock frequency in
each CPU cycle for each task. The computing resources
of each edge server are quantified by the computational
rate zj , expressed in terms of number of CPU cycles per
second. After receiving the offloaded task from a UE, the
server will execute the task on behalf of the UE and, upon
completion, will return the output result back to the UE.
The computing resource allocation strategy is defined as
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z = {zij |i ∈ U , j ∈ S}, in which zij (zij > 0) is the
amount of computing resource that edge the jth server
allocates to task Ai offloaded from user i ∈ Uj . Hence,
clearly zij = 0,∀i /∈ Uj . In addition, a feasible computation
resource allocation strategy must satisfy the computation
resource constraint, expressed as,∑

i∈U
zij ≤ zj ,∀j ∈ S. (10)

Given the computation resource assignment {zij ,∀j ∈ S},
the execution time of task Ai at the edge servers is,

t3i =
∑
j∈S

aijWi,ρ

zij
,∀i ∈ U . (11)

In this paper, we only care about the energy efficiency of
UEs, when the task being executed in the edge server, the
execution time will influence the energy efficiency of the UE,
hence we only consider the execution time but the energy
consumption of the edge server.

3.5 Optimization Objective
As mentioned, UEs have limited energy capacity, energy-
efficient design in mobile edge computing is urgent. Our
Objective is to maximize the energy efficiency of all UEs
under statistical QoS constraint. Energy efficiency is a per-
formance metric that we learn form conventional wireless
communication network, which is defined as the ratio of
the overall transmitted bits to the totally consumed energy
[23]. Throughout this paper, we expand the meaning of the
energy efficiency to be the ratio of the overall executed(
transmitted) bits of tasks to the totally energy consumption
of UEs. In the local execution, the energy efficiency can be
expressed as the ratio of input data size and the energy
consumption, i.e.,

η1
i,ρ =

Li

κ
Wi,ρ∑
w=1

F cWi
(w)[fi(w)]

2

. (12)

In the edge execution, the energy efficiency can be expressed
as the ratio of effective capacity and the energy consumption
during a channel block,

η2
i,ρ =

Cei (θi)

Tb(pi + pc)
, (13)

where pc is the static circuit power consumption.

4 PROBLEM FORMULATION AND ANALYSIS

The weighted sum energy efficiency of all UEs can be
written as,

ηρ(a, f ,p, z) =
∑
i∈U

λi
(
(1−aij)η1

i,ρ + aijη
2
i,ρ

)
, (14)

with λi ∈ [0, 1] specifying the priority of the ith UE. And
the total execution time can be expressed as,

Di = (1−aij) t1i + aij
(
t2i + t3i

)
. (15)

Hence, the QoS driven task offloading problem with statis-
tical guarantee is formulated as follows,

P1 max ηρ(a, f ,p, z)

s.t. C1 :Pr (Di ≤ Di,ddl) ≥ ρi,∀i ∈ U
C2 :aijk ∈ {0, 1},∀i ∈ U , j ∈ S, k ∈ B
C3 :

∑
i∈U

aijk ≤ 1,∀j ∈ S, k ∈ B

C4 :
∑
j∈S

∑
k∈B

aijk ≤ 1,∀i ∈ U

C5 :0 ≤ fi(w) ≤ fi,max,∀i ∈ U\Uoff

C6 :0 ≤ pi ≤ pi,max,∀i ∈ Uoff

C7 :
∑
i∈U

zij ≤ zj ,∀j ∈ S

C8 :zij ≥ 0,∀i ∈ U ,∀j ∈ S.

In P1, C1 reflects the delay constraint in a probabilistic man-
ner. C2 and C3 imply that each task can be either executed
locally or offloaded to at most one edge server on one sub-
band. C4 implies that at most one user can establish a link
with a BS on one sub-band. C5 and C6 are the computation
frequency constraint and transmit power budget imposed
by CPU of UE and the radio interface respectively. C7 and
C8 state that the amount of computation resources that
the edge server allocate to UEs should be positive, and
that the allocated computation resource must not excess the
edge server capacity. Obviously, P1 is an MINLP problem,
which is NP-hard [24]. P1 is polynomially reducible to the
knapsack problem [25], which is NP-complete. Even with
the statistical delay constraints in C1, the problem is not
tractable directly, so some equivalent transformations are
made for both local execution and edge execution.

4.1 Equivalent Problem Transformation

First, a transformation of statistical delay constraint is made
for statistical computation model. As stated in Section 3.1,
the statistical QoS requirement is in the form of CPU cycle,
namely, Pr[Wi ≤ Wi,ρ] ≥ ρi. It is necessary to prove
that the statistical delay constraint and statistical CPU cycle
constraint are equivalent. Suppose the ith UE executes its
task locally, we have the following theorem.

Theorem 1. With the statistical computation model, we can
transform the statistic delay constraint Pr(t1i ≤ Di,ddl) ≥ ρi

into Pr(Wi ≤Wi,ρ) ≥ ρi and
Wi,ρ∑
w=1

1
fi(w) ≤ Di,ddl.

Proof. As mentioned in Section 3.1, the local execution time

t1i =
Wi∑
w=1

1
fi(w) . We define t1i,ρ =

Wi,ρ∑
w=1

1
fi(w) , by the time t1i,ρ,

the task completes with a probability ρi while meets the
deadline, that is, Pr(t1i ≤ t1i,ρ) ≥ ρi and t1i,ρ ≤ Di,ddl. And

we have Pr(
Wi∑
w=1

1
fi(w) ≤

Wi,ρ∑
w=1

1
fi(w) ) ≥ ρi and

Wi,ρ∑
w=1

1
fi(w) ≤

Di,ddl. Therefore, Pr(Wi ≤ Wi,ρ) ≥ ρi and
Wi,ρ∑
w=1

1
fi(w) ≤

Di,ddl.

Suppose the ith UE offloads its task to the jth BS, we
have the following theorem to prove the statistical delay
constraint and effective capacity constraint are equivalent.
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Theorem 2. With the statistical transmission model, we can
transform the statistical delay constraint Pr(t2i + t3i ≤ Di,ddl) ≥
ρi into the effective capacity constraint, i.e.,

Cei (θi) = − 1

θi

∑
k∈B

∑
j∈S

lnE
{
e−θiaijkrijk

}
≥ L/Ts, (16)

where, θi = −2 ln((1−ρi)/c)
(Di,ddl−t3i )Li/Ts

.

Proof. Suppose that data arrives in the transmit buffer at
a constant rate rarrival

i (t) = L
Ts

. At time t, the delay ex-
perienced by the data, i.e., t2i (t) is related to the queue
length of the buffer Qi (t) through Qi (t) = L

Ts
t2i (t). Qi,max

is the maximal buffer size. For a specified delay bound
Di,max(Di,max = Di,ddl − t3i ), a service constraint may
require the delay-violation probability to be no greater than
a certain threshold (1− ρi), i.e., Pr

{
t2i (∞) > Di,max

}
≤

1 − ρi where t2i (∞) represents the probability distribution
of the delay experienced by packets at steady state.

Lemma 1. [26] Assume that the joint process (Qi (t) , hijk (t)),
where hijk (t) is stationary and ergodic. When the system is
stable, we have

Pr
{
t2i (∞) > Di,max

}
≥ cPr {Qi (∞) > Qi,max} (17)

and
lim

Qi,max→∞

ln Pr[Qi(t) ≥ Qi,max]

Qi,max
= −θi. (18)

Here, c is some positive constant,Qi (∞) is the steady-state queue
distribution of the buffer, Qi,max = L

Ts
Di,max.

Lemma 2. [26] When the value of Qi,max is typically large, the
buffer overflow constraint will be met provided that

θi ≥ θi,0 =
−2 log((1− ρi)/c)

(Di,max)Li/Ts
. (19)

Lemma 3. [26] QoS exponent satisfies θi ≥ θi,0 whenever the
constant arrival rate fulfills

− 1

θi

∑
j∈N

lnE
{
e−θiaijkrijk

}
≥ Li/Ts. (20)

Lemma 2 connects the delay-violation probability to
the buffer overflow probability. Lemma 3 shows that a
constraint on statistical delay-violation probability can be
transformed into a requirement on the decay rate of buffer
occupancy. Lemma 4 shows that a requirement on the decay
rate of buffer occupancy can be transformed into effective
capacity constraint. Therefore, the statistical delay constraint
Pr(t2i + t3i ≤ Di,ddl) ≥ ρi can be equivalently transformed
into the effective capacity constraint.

From Theorem 1 and Theorem 2, we can quantify the
correlation between the statistical QoS guarantee and task
offloading strategy. We transform P1 to P2,

P2max ηρ(a, f ,p, z)

s.t. C1a :
Wi,ρ∑
w=1

1
fi(w) ≤ Di,ddl,∀i ∈ U\Uoff

C1b : Cei (θi) ≥ Li/Ts,∀i ∈ Uoff

C2− C8.

Still, P2 is an MINLP problem, our goal is to design a holistic
solution with low complexity that achieves competitive

performance while being practical to implement, given the
large number of UEs, edge servers, and sub-bands. As the
problem is so complicated, the idea of our solution is to
make problem decomposition according to the feature of the
problem in the first place, and then settle the sub-problems
one by one.

4.2 Problem Decomposition
Given the high complexity of the problem P2 due to the
combinatorial nature of the task offloading decision, we
firstly schedule the communication and computation re-
sources under a fixed task offloading decision, which is
stated in P3.

P3 max
f ,p,z

ηρ(a, f ,p, z)

s.t. C1,C5− C8.

Based on the scheduling result of resource allocation, the
task offloading decisions are made in P4.

P4 max
a

η̂ρ(a, f
∗,p∗, z∗)

s.t. C2− C4,

where η̂ρ(a, f∗,p∗, z∗) is the optimal-value function corre-
sponding to the resource allocation problem stated in P3.
The problem decomposition makes the problem in P1 easier
to address. In the next section, a holistic solution for problem
in P1 is given.

5 STATISTICAL QOS DRIVEN TASK OFFLOADING
ALGORITHM DESIGN

In this section, we design a low-complexity holistic algo-
rithm to guarantee the statistical QoS requirement for task
offloading in mobile edge computing. First, we settle the
resource allocation problem in P3 under a fixed task of-
floading decision. Then, we achieve the offloading decisions
based on the resource allocation results.

5.1 Resource Allocation Mechanism
5.1.1 Local Computation Resource Allocation
In this section, we study the local computation resource
allocation sub-problem to maximize the energy efficiency
of UEs by optimally scheduling the clock frequency of the
CPU. The problem can be expressed as,

P3.1 max
f

∑
i∈U

λi(1−aij)
Li

κ
Wi,ρ∑
w=1

F cWi
(w)[fi(w)]

2

s.t. C1a, C5.

As stated in Theorem 4.1 of [7], the optimal clock
scheduling vector is given by

f∗i (w) =
ςi

Di,ddl[F cu,W (w)]
1/3

, 1 ≤ w ≤Wi,ρ, (21)

where ςi =
Wi,ρ∑
w=1

[F cWi
(w)]

1/3. The optimal energy consump-

tion of local execution is E∗i = κ
D2
i,ddl
{
Wi,ρ∑
w=1

[F cWi
(w)]

1/3}3.
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Simplifying the above result, the optimal energy consump-
tion for computation isE∗i = Ki(Li)

3

D2
i,ddl

, whereKi is a constant
factor determined by κ and ρi. And the optimal energy
efficiency of local execution is

η1∗
i,ρ =

D2
i,ddl

Ki(Li)
2 (22)

5.1.2 Edge Server Computation Resource Allocation
Still, that how the edge server computation resource allo-
cation affects the energy efficiency of task offloading is not
evident. Form C1 in P1, here is

Pr(t2i ≤ Di,ddl − t3i ) ≥ ρi. (23)

Observing Eq.(23), we can see that reducing t3i can expand
the feasible region of pi, which consequently decreases the
optimal value of transmit power allocation. Hence, instead
of directly solving transmit power allocation sub-problem,
edge server computation resource allocation sub-problem is
resolved in advance. We minimize the sum of execution time
of all the tasks,

P3.2 min
z

∑
j∈S

∑
i∈Uj

λiWi,ρ

zij

s.t. C7, C8.

Notice that the constraint in C8 is convex. Denote
the objective function in P3.2 as obj(z). By calculating
the second-order derivatives of obj(z) w.r.t. zij , here are,
∂2obj(z)
∂zij2

=
λiWi,ρ

zij3
> 0,∀i ∈ Uj ,∀j ∈ S , and ∂2obj(z)

∂zij∂zuv
=

0,∀(i, j) 6= (u, v),∀i, u ∈ Uj ,∀j, v ∈ S . The Hessian
matrix of the objective function in P3.2 is diagonal with
the strictly positive elements, thus it is positive-definite.
Hence, P3.2 is a convex optimization problem, and can be
solved using Karush-Kuhn-Tucker conditions. In particular,
we can obtain the optimal edge server computation resource
allocation as,

z∗ij =
zj
√
λiWi,ρ∑

i∈Uj

√
λiWi,ρ

,∀j ∈ S. (24)

And the optimal execution time for the ith UE offloading its

task to edge sever j is t3∗i =

√
Wi,ρ

∑
i∈Uj

√
λiWi,ρ

zj
√
λi

.

5.1.3 Transmit Power Allocation
After the execution time in edge server is determined,

the transmit power allocation problem is,

P3.3 max
p

∑
i∈U

λi
Cei (θi)

Tbpi

s.t. C1b, C6.

The energy efficiency of edge execution has the same
properties in [23]. The properties demonstrate the quasi-
concavity of η2

i,ρ, and imply both the existence and the
uniqueness of the global maximum for P3.3. More impor-
tantly, as a result of the quasi concavity, problem P3.3
can be solved iteratively by the derivative-aided bisection
search method similar to [23]. With a fixed transmit power,

Algorithm 1 Derivative-aided bisection search for transmit
power allocation

Input:
a: A task offloading decision.
pi,max: Maximal transmit power.

Output:
p∗: Optimal transmit power allocation strategy.

1: Solve the problem with pi = pi,max.
2: Calculated the energy efficiency η2

i,ρ and the derivative
dCei (pi,max)

dpi
according to Eq.(13) and Eq.(25).

3: if dCei (pi,max)
dpi

≥ 0 then
4: Return pi,max (maximum value is achieved),
5: else
6: p(1) = pi,max.
7: end if
8: Solve the transmit power minimization (convex opti-

mization) problem,pi,min = minpi≥0pi under the con-
straints C1b and C6 to get the Pi,min.

9: Calculate η2∗
i,ρ(pi,min) and dCei (pi,min)

dpi
.

10: if dCei (pi,min)
dpi

≤ 0 then
11: Return pi,min(maximum value is achieved),
12: else
13: p(2) = pi,min.
14: end if
15: while no convergence do
16: pi = p(1)+p(2)

2 .
17: Calculate η2∗

i,ρ(pi) and dCei (pi)
dpi

.

18: if dCei (pi)
dpi

< 0 then
19: p(1) = pi.
20: else
21: p(2) = pi.
22: end if
23: end while

the algorithm can find the maximum energy efficiency η2∗
i,ρ

and the sign of its derivative for a given transmit power,
pi ≤ pi,max. Then the algorithm searches for the transmit
power p∗i , that results in the maximum energy efficiency by
derivative-aided bisection power search in Algorithm 1.

5.2 Task Offloading Decision

Still, due to the NP-hardness of the task offloading prob-
lem, designing efficient algorithm to find the optimal task
offloading decision remains an open issue. We propose a
statistical QoS driven task offloading algorithm based on a
variation of Gibbs sampling [27]. The task offloading deci-
sion evolves as an N -dimensional Markov chain in which
the ith dimension corresponds to ith UE task offloading
decision. Applying a variation of Gibbs sampling, we first
construct a transition probability matrix to guarantee that
theN -dimensional Markov chain is irreducible and aperiod-
ic. Hence, the stationary distribution can be achieved, where
we can obtain the optimal decision with high probability
(see Theorem 3). The task offloading decision is achieved
in a decentralized manner by performing improvement
step one at a time. The proposed algorithm is described
in Algorithm 2. In each iteration, a randomly selected UE
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dCeu(θi)

dpi
= log2e

∑
j∈N

aijk ln
∫∞
0 e

−θiaijkTbBlog2(1+
pihijk

Îijk+N0B
) hijk
Îijk+N0B+hijkpi

gijk (hijk)dhijk∫∞
0 e−θiaijkrijkgijk (hijk)dhijk

. (25)

Pr(Sa1,a2 |Sa′1,a′2) =

 e
−f(S

a′1,a′2
)/τ

2MK(e
−f(S

a′1,a′2
)/τ

+e
−f(S

a′1,a′2
)/τ

)

, a′1 = a1or a′2 = a2

0, otherwise

. (26)

Algorithm 2 Distributed statistical QoS driven task offload-
ing algorithm

Input:
a: A feasible task offloading decision.

Output:
a∗, f∗,p∗, z∗: Optimal task offloading strategy.

1: Randomly choose a UE to alter offloading decision to ãi.
2: if ãi is feasible then
3: ã = {a−i, ãi}.
4: Obtain the f̃ , p̃, z̃ by maximizing P3.
5: Prob = 1

1+e
(ηi,ρ− ˜ηi,ρ)

τ

,

6: With probability Prob,
7: {a∗ = ã, f∗ = f̃ ,p∗ = p̃, z∗ = z̃.}
8: With probability 1− Prob,
9: the ith UE keeps a unchanged.

10: Broadcast task offloading decision a.
11: end if
12: Return a∗, f∗,p∗, z∗, if the stopping criterion is satisfied,

otherwise go to Line 1.

change its offloading decision ai to ãi (Line 4), then the
optimal resource allocation f∗,p∗, z∗ is derived by address-
ing P3 (Line 5). Afterwards, the offloading decision of the
selected UE is updated to the new one with a probability
Prob = 1

1+e
(ηi,ρ− ˜ηi,ρ)

τ

, which depends on the difference be-

tween ηi,ρ and ˜ηi,ρ, or remain unchanged with a probability
1 − Prob (Line 6-11). Then offloading decision is updated
(Line 12). The algorithm converges with a higher probability
to the global optimal solution.

Theorem 3. As τ (τ > 0) decreases, Algorithm 2 converges with
a higher probability to the global optimal solution of P4. When
τ → 0, Algorithm 2 converges to the global optimal solution with
probability 1.

Proof. Let X = {x1, x2, · · · , xMK} be the offloading deci-
sion space of all the users. At each offloading round, the user
choose an offloading decision aijk ∈ X . We denote the of-
floading decision as a. Following the iterations of algorithm,
a evolves as an N -dimensional Markov chains in which the
ith dimension corresponds to the ith UE offloading decision.
We begin with the case of two UEs and denote the state of
Markov chains as Sa1,a2 ,where ai ∈ X , i = 1, 2. Since only
one user is selected to explore a new offloading decision at
each iteration with equal probability among all BSs, we have
the expression in Eq.(26), where f(Sa1,a2) is the objective
function in P4. Then we derive the stationary distribution

Pr∗ for each state and examine the balance equation as
follows

MK∑
i=2

Pr∗(Sx1,x1)×Pr(Sx1,xi |Sx1,x1 )

=
MK∑
i=2

Pr∗(Sx1,xi)×Pr(Sx1,x1
|Sx1,xi )

. (27)

Substituting Eq.(26) into Eq.(27), we have

MK∑
i=2

Pr∗(Sx1,x1
)× e−f(Sx1,xi )/τ

2MK(e−f(Sx1,xi )/τ+e−f(Sx1,xi )/τ )

=
MK∑
i=2

Pr∗(Sx1,xi)× e−f(Sx1,x1 )/τ

2MK(e−f(Sx1,x1 )/τ+e−f(Sx1,x1 )/τ )

.

(28)
Observing the symmetry of equation Eq.(28), we note that
the set of equations in Eq.(28) are balance if for arbitrary
state S̃ in the strategy space Ω, the stationary distribution is
Pr∗(S̃) = Ke−f(S̃)/τ , where K is a constant. By applying
the probability conservation law, we obtain the stationary
distribution for the Markov chain as

∗
Pr(S̃) =

e−f(S̃)/τ∑
Si∈Ω

e−f(S̃i)/τ
, (29)

for arbitrary state S̃ in the strategy space Ω. In addition, we
observe that the Markov chain is irreducible and aperiodic.
Therefore, the stationary distribution given in Eq.(29) is
valid and unique. Let S∗ be the optimal state which yields
the maximum value in P4, i.e., S∗ = arg max

Si∈Ω
f(Si). From

Eq.(29), we have lim
τ→0

Pr∗(S̃) = 1 which substantiates that
the algorithm converges to the optimal state in probability.
Finally, the analogous analysis can be straightforwardly
extended to an N -dimensional Markov chain.

6 EXPERIMENT RESULTS

6.1 Evaluation Setup
Extensive experiments are performed on a MATLAB-based
simulator. In the simulated network area, BSs and UEs
are randomly located spatially according to the Poisson
Point Process distribution with the density of µ1 and µ2,
respectively. Each UE can establish a link with any BS. TGn
pathloss model and Rician fading with 6dB Rician factor are
considered. Main parameters are listed in TABLE 2.

We evaluate the performance of the proposed algorithm
using the metric of energy efficiency from two aspects:
effectiveness and efficiency. In the effectiveness evaluation,
we first verify the near-optimality of the proposed algorithm
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Fig. 1: Near-optimality.
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TABLE 2: Simulation Parameters

Parameters Value
Ts 1 s (unchanged)
Tb 1 ms [23](unchanged)
κ 10−11 (unchanged)
B 15 KHz[23](unchanged)
pi,max 0.1 W [23](unchanged)
Noise power -174 dBm (unchanged)
λi 1 (default)
Li 1000 bits [7](default)
Di,max 50 ms [7](default)
ρi 0.995 [7](default)
zj 1 GHz (default)

and then show the energy efficiency improvement com-
pared with the baselines in different parameter settings. In
the efficiency evaluation, we validate the convergence and
scalability of the proposed algorithm. At last, we also vali-
date the influence of some parameters on energy efficiency,
which have been analyzed in theoretical results in Section
5. The proposed algorithm is compared with the following
four algorithms.

1) EXHAS (Exhaustive search): It is a brute-force method
that finds the optimal offloading strategy via ex-

haustive search over 2n(n = NMK) solutions.
2) hJTORA [28] (holistic Joint Task Offloading and Re-

source Allocation): In this scheme, the offloading
decisions are made by the hJTORA algorithm in
[28]. The hJTORA algorithm also has two layers. In
the out layer, offloading decision is improved based
on any initial scheme by two operations: remove()
and exchange(). It eventually converges to a local
optimum. In the inner layer resources are optimally
allocated under the offloading decision.

3) Greedy: In this scheme, all the tasks are offloaded
and the offloading users are greedily assigned to
the sub-bands with the highest channel gains until
all the user are admitted or all the sub-bands are
occupied.

4) LOC (All-local execution): All tasks are executed lo-
cally, and the local computation resources are opti-
mally scheduled.

6.2 Effectiveness

6.2.1 Near Optimality

The proposed algorithm’s performance is the same as the ex-
haustive search method. Due to the high time complexity
of exhaustive search method, the comparison is carried
out in small network scales with µ1 = 2, µ2 = 2 and
µ1 = 2, µ2 = 3. As shown in Fig. 1, the near-optimality



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2020 10

of the proposed algorithm in terms of the average energy
efficiency (with 95% confidential interval) is guaranteed by
Theorem 3. The hJTORA of [28] achieves the same perfor-
mance with our algorithm. Note that when a user is added
into the system, the energy efficiency of local execution is
significantly increased, while the energy efficiency of the
other three schemes is increased slightly. The reason is that
when there are more users in the system, the competition
for sub-bands and edge server computation resources will
reduce the energy efficiency of edge execution.

6.2.2 Energy efficiency Improvement

Due to the exponential time complexity of the exhaustive
method, the proposed algorithm is only compared with
hJTORA, Greedy, and LOC algorithms when the network
size goes large.

The average energy efficiency of the proposed algorithm is
improved by 14.4%, 22.4% and 49.7% than hJTORA, Greedy,
and LOC respectively with the increase of UE number. In Fig.
2, the variation of average energy efficiency (of each UE) is
shown with µ1 = 5 and µ2 varying from 10 to 25. There
are two kinds of edge CPU speed settings: 0.5G Hz and 1G
Hz. The proposed algorithm achieves the energy efficiency
because it can converge to the global optimal solution with
high probability by iteratively update the offloading deci-
sion. The hJTORA and Greedy algorithms always fall into
local optimal solution. We observe that the energy efficiency
of the proposed algorithm decrease with the increase of
UE number. The reason is that, when the UE number in-
crease, the competition for sub-band and edge computation
resources would be fiercer, the edge computation resources
available to each user is reduced averagely, which would
lead to the decrease of the average energy efficiency.We also
observe that the energy efficiency of all algorithms (except
LOC) are higher when the edge CPU speed increases. The
reason is that, higher edge CPU speed can lower the edge
execution time and further loose the wireless transmission
requirement, which lead to higher energy efficiency. The
edge CPU speed has no influence on local execution.

The average energy efficiency of the proposed algorithm is
improved by 6.5%, 8.8% and 61.2% than hJTORA, Greedy,
and LOC respectively with the task completion probability. As
shown in Fig. 3, the average energy efficiency of all solutions
decreases with the increase of the task completion probabil-
ity due to the two following reasons. Firstly, due to that
the Gamma distribution is exponentially tailed, as the task
completion probability increases, the energy consumption
of local execution increases monotonically, as a result, the
energy efficiency of local execution decreases monotonically.
Secondly, in edge execution, the increase of task completion
probability ρ will lead to the increase of delay exponent (see
Lemma 3), which means a more stringent delay require-
ment. As effective capacity is a strictly and monotonically
decreasing function of statistical delay exponent, the energy
efficiency of edge execution will also decrease along with
the increase of task completion probability ρ. The energy
efficiency of all algorithms (except LOC) are higher when
the edge CPU speed increases and the reason is the same
as analyzed in UE number part (in the second paragraph of
this subsection).

The average energy efficiency of the proposed algorithm is
improved by 17.7%, 31.1%, and 268.3% than hJTORA, Greedy
and LOC respectively with the variation of task input data size.
As shown in Fig. 4, the average energy efficiency of all four
solutions decreases in both edge CPU settings (0.5G Hz and
1G Hz) when the task input data size varies from 500 bits
to 2000 bits. The decrease of average energy efficiency is
due to the two following reasons. Firstly, in local execution,
the increase of input data size can result in the decrease
of energy efficiency directly (see Eq.(22)). Secondly, in edge
execution, the increase of input data size means higher
data arrival rate and longer edge computation time, both of
which will lead to the decrease of energy efficiency. When
the data size is small (say 500 bits), all the four solutions
have same value of the average energy efficiency in that the
local execution performs better that the edge execution, all
the four solutions choose to execute the task on the UE. As
the data size goes larger, the average energy efficiency of
the local execution will decrease with a scaling law of 1

L2
i

.
The edge execution performs better than local execution.
Hence, task offloading can improve UEs’ energy efficiency
significantly when the data size increases. Comparing the
two different edge CPU settings, we can infer that the
energy efficiency improvement of all the three offloading
algorithms (Proposed, hJTORA, and Greedy) is higher when
the edge CPU speed increases. Because higher edge CPU
speed can reduce the edge execution time and the wireless
transmission deadline can be loosened from Eq.(23). This
can save more transmit power which lead to higher energy
efficiency from Eqs.(7), (9) and (13).

6.3 Efficiency
The efficiency of the proposed algorithm is evaluated by
the convergence and scalability. Convergence means the
algorithm can achieve a stable solution after some iterations.
Scalability means that the algorithm can scale well with the
network size.

The proposed algorithm can converge to the near-optimal
results when τ ≤ 10−4. The impact of τ on the convergence
of the proposed algorithm is shown in Fig. 5. It can be
observed that when τ = 10−4, the algorithm converges
to the global optimum. And the algorithm runs into local
optimums several times before it finds the global optimum.
When τ = 10−3(10−2, 10−1, 100), the proposed algorithm
falls into the local optimum and converges to inferior so-
lutions. The simulation result verifies Theorem 3 that the
stationary probability of the optimal task offloading result
increases with the decrease of τ , and the probability → 1
when τ → 0. Because the smaller is τ , the more probable
that the selected UE updates to the better task offloading
decision in each iteration. Therefore, the smaller is τ , the
more probable that the proposed algorithm converges to the
optimal task offloading decision.

The proposed algorithm scales linearly with the variation of
UE number, as shown in Fig. 6. We set µ1 = 5 and the UE
number µ2 varies from 0 to 35 with the increment of 5. And
we record the iteration numbers when the proposed algo-
rithm converges. All the iteration numbers are averaging
over 100 times. We can fit the variation of iteration number
with a linear function, y = 6.871x− 7.857. So the proposed
algorithm can scale when network size goes large.
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6.4 Effect of Specific Parameters on Energy Efficiency

The energy efficiency in local execution η1∗
i,ρ scales at

(
Di,ddl

Li

)2
.

In Fig. 7, the maximal energy efficiency of local execution is
plotted as a function of the ratio of the task deadline (rang-
ing from 20ms to 50ms) and the input data size (ranging
from 500bits to 2000bits). Then it is compared with a scaling

law of
(
Di,ddl

Li

)2
. The experiment result matches the calcula-

tion result in Eq.(22). It can be known that if the input data
size increases and the delay constraint becomes stringent,
the energy efficiency of local execution will decline. It infers
that location execution may be not suitable for computation
intensive and delay stringent tasks.

The energy efficiency in edge execution decrease along with
the increase of the edge execution time. In Fig. 8, the energy
efficiency in edge execution with the edge execution time
under different transmit power is evaluated. As the edge
execution time is relatively short, the energy efficiency de-
crease slightly. When the edge execution time exceed a cer-
tain threshold (about 40ms), the energy efficiency decrease
sharply. The increase of edge execution time will influence
the transmission time requirement directly (see Eq.(23)).
This will decrease the overall effective capacity.

7 CONCLUSIONS

In this paper, we make the following four key contributions.
First, we propose the statistical QoS guarantee for task
offloading in mobile edge computing. Second, we quantify
the correlation between statistical QoS requirement and task
offloading strategy in mobile edge computing. Third, we
propose an algorithm to provide the statistical QoS guaran-
tee using convex optimization theory and Gibbs sampling
method. Forth, we conducted extensive experiments in d-
ifferent parameter settings. Our results show the proposed
algorithm can converge and significantly improve the ener-
gy efficiency. In the future works, we will investigate how
to extend to scenarios with multiple QoS requirements.
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